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Genomes are composed of a wide variety of elements with distinct roles and characteristics. Some of these
elements are well-characterised functional components such as protein-coding exons. Other elements play
regulatory or structural roles, encode functional non-protein-coding RNAs, or perform some other function yet
to be characterised. Still others may have no functional importance, though they may nevertheless be of interest
to biologists. One technique for investigating the composition of genomes is to segment sequences into compo-
sitionally homogenous blocks. This technique, known as ‘sequence segmentation’ or ‘change-point analysis’, is
used to identify patterns of variation across genomes such as GC-rich and GC-poor regions, coding and non-
coding regions, slowly evolving and rapidly evolving regions and many other types of variation. In this mini-
reviewwe outline many of the genome segmentation methods currently available and then focus on a Bayesian
DNA segmentation algorithm, with examples of its various applications.
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1. Role of genome segmentation

Identifying the distinct components of the human and other
genomes is a core task in current bioinformatics, and a necessary
pre-requisite to a full understanding of the connections between
genomes and phenotypes. Yet the annotation of complex eukaryotic
genomes is still far from complete. Even the proportion of the genome
that performs biological functions is still hotly debated, with estimates
varying from 5% [1] to 80% [2]. Whatever the true figure may be, it is
clear that a vast amount of the biology underlying the structure of
genomes remains to be discovered. Bioinformatics has an important
role to play in this endeavour, and one of its tasks is to identify segments
of the genome representing elements that require annotation.

2. Segmentation methods

Several techniques have been developed to analyse variation in
properties of interest across a genome and to provide clues to the nature
of its components. In this article we review some of the most widely
used segmentation methods and discuss the main ideas behind each
technique.

2.1. Sliding window analysis

Although not technically a segmentation method, ‘sliding window
analysis’ is the most commonly used way to profile variation in a prop-
erty of interest across a genome. This technique involves averaging the
property of interest over a sliding window of a predetermined length
along the sequence. For example if the window size is 10, the first
point is obtained by averaging the property of interest over nucleotides
1–10, the second point is the average over nucleotides 2–11, and so on.
Determining the window size can be crucial: a smaller window allows
for a more precise localisation of changes, however this can increase
the noise. Tajima in 1991 has proposed an algorithm to determine
window size [3]. The main drawback of the sliding window analysis is
that it does not identify boundaries where statistically significant
changes to the property in question occur. To avoid some of the disad-
vantages of the sliding window approach, a windowless technique
based on the Z curve was introduced to analyse GC content of genomic
sequences [4]. This method enables calculation of GC content at any
resolution, even at a base position. Some applications of the sliding
window analysis can be found in papers [5–16].

2.2. Hidden Markov models

More precise segmentation methods have been developed to
identify homogenous segments aswell as the locations (change-points)
at which sharp changes in a particular property of interest occurs.
Hidden Markov models (HMMs) are one approach capable of inferring
segment boundaries. TheHMMmethodology iswell-established, dating
from the 1950s [17]. In these models, the observed sequence is consid-
ered to be composed of segments, with the sequence of each segment
generated by a Markov process. The transition probabilities for each
segment are determined by a hidden state, and transitions between
hidden states occur at segment boundaries. The sequence of hidden
states is also modelled as a Markov process. A key parameter of an
HMM is the order of the Markov chain, that is, the number of preceding
sequence positions required to condition the transition probabilities of
the observed sequence. This is unknown a priori, and usually needs to
be specified, although some approaches are able to infer the order, or
determine it adaptively.

HMMs were first used in biological sequence analysis by Churchill
[18,19]. The parameters of the model, including segment boundaries,
were estimated by using the maximum likelihood method based on
the expectation–maximisation (EM) algorithm [20]. HMMs have since
been widely used for sequence analysis problems in bioinformatics,

and an extensive literature now exists. Two important developments
were the 1998 GeneMark.hmm algorithm which used an HMM to find
exact gene boundaries [21] and an HMM developed by Peshkin and
Gelfand in 1999 to segment yeast DNA sequences [22]. Some other im-
portant examples are included in [23–29]. The Sarment package of Py-
thon modules built by Gueguen for easy building and manipulation of
sequence segmentations uses both sliding window and HMM methods
[30].

HMMmodels have also been implemented from a Bayesian perspec-
tive. One advantage of adopting a Bayesian approach is that it provides
quantification of the uncertainties in parameter estimates in the form of
probability distributions. In fact, one can dispense with point estimates
of parameters altogether, instead reporting marginal distributions for
key parameters, such as the locations of change-points. Boys et al. in
2000 presented a Bayesian method of segmentation using HMMs
when the number of segments is known [31] and later generalised
this method for an unknown number of segments [32]. In 2006, the
segmentation method developed by Kedzierska and Husmeier was a
combination of the sliding window analysis and the Bayesian HMM
[33]. Nur and co-workers in 2009 performed sensitivity analysis on
priors used in the Bayesian HMM to show the impact of prior choice on
posterior inference [34]. One challenge for Bayesian HMM approaches
is that they are computationally intensive and are typically infeasible
for segmenting large-scale sequences, without simplifying heuristics.

2.3. Multiple change-point analysis

This approach arose independently of HMMs, and has an exten-
sive literature dating back to the 1970s [35,36]. Change-point analy-
sis differs from HMMs in that it typically assumes no Markov
dependence in either the observed sequence or the underlying se-
quence of hidden states. In this sense change-pointmodels are simpler
than HMMs, and have fewer parameters. However, the two types of
analysis are clearly related, and it may be useful to think of change-
point models as zeroth order HMMs. A key advantage of change-point
models, due to their simplicity, is their reduced computational burden,
a pointwhich is of particular relevancewhen implementing themwith-
in a Bayesian framework.

The use of multiple change-point models in bioinformatics was
pioneered by Liu and Lawrence in 1999, using a Bayesian framework
[37]. In 2000, Ramensky et al. developed a similar method which uses
a Bayesian estimator tomeasure the degree of homogeneity in segmen-
tation [38]. In this method, optimal segmentation is obtained by
maximising the likelihood function using the dynamic programming
technique presented in [39]. After completion, the partition function
approach is used to obtain segmentation with longer segments by
filtering theboundaries. In contrast to the approach of Liu and Lawrence,
this method does not use probability distributions for segment bound-
aries and does not use sampling. A related method is presented in
[40], which uses reversible jump Markov chain Monte Carlo (RJMCMC)
sampling method to estimate posterior probabilities [41]. In contrast
to Liu and Lawrence, they have used Poisson intensity models as the
underlying model (as opposed to multinomial likelihood). The method
has been tested by applying to modelling the occurrence of ORFs along
the human genome. Another Bayesian model can be found in [42].

Themethod onwhichwe focus in themain part of this article [43,44]
is also of this type. The method can be described as a segmentation–
classificationmodel as it not only detects change-points but also groups
segments based on their sequence characteristics. The group to which a
segment belongs is essentially a hidden state, in the terminology of
HMMs, and the classification is unsupervised, in the terminology of
machine learning. There are two main innovations in this method. The
first is that the character frequencies (emission probabilities) for a
given segment are not constant for all segments in a group. Instead,
the character frequencies are drawn from a Dirichlet distribution
specific to the group to which that segment belongs, and it is the

108 M. Algama, J.M. Keith / Computational and Structural Biotechnology Journal 10 (2014) 107–115



Download English Version:

https://daneshyari.com/en/article/2079129

Download Persian Version:

https://daneshyari.com/article/2079129

Daneshyari.com

https://daneshyari.com/en/article/2079129
https://daneshyari.com/article/2079129
https://daneshyari.com

