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One of the basic assumptions of the micropolar theory is that the stress tensor is not symmetric. In this paper,
asymmetry of the stress tensor is studied with discrete element method and averaging method. The change of
the skew symmetric part of an asymmetric tensorwith the rotation of the coordinate system is shown graphical-
ly. Averaging method is used to obtain stress tensor from a DEM simulation of biaxial test. Stress asymmetries at
different locations, scales and time steps are studied. The importance of the asymmetric stress for setting up a
constitutive model for granular materials is discussed.
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1. Introduction

In classical continuum mechanics, the Cauchy stress tensor used to
describe the stress state of materials is assumed to be symmetric. This
holds for a large class of materials and cases in continuum modeling
[8,9,16,31,45,46,48]. However, the stress tensor is not necessarily sym-
metric. The asymmetry of stress becomes significant if the microscopic
scale material behavior is considered. This has been proved by several
researches [2,3,10,17,23]. In some advanced continuum theories, such
as micropolar continuum theory [13,22,25,35,36,42], asymmetric stress
tensors are used. The balance of the skew symmetric part requires
additional degrees of freedom and characteristic length. For granular
materials, especially in strain localized regions [32–34,37,38,44,47,49]
and boundaries [43], the asymmetry stresses are shown to have
important effects. Although the symmetric parts of stress tensor are
important, neglecting the asymmetric part can lead to inaccuracy for
many microscopic problems [1,12,29,39]. Hence, this paper will focus
on the asymmetric parts of stress tensors.

In this paper, we first start with the analysis of a general asymmetric
tensor, which can be decomposed into a symmetric part and a skew
symmetric part. The change of the skew symmetric partwith coordinate
is shown graphically in the same way that shear stresses are shown in
Mohr circles.

A simulation of biaxial test is carried out using discrete element
method (DEM). The sample is loaded until a shear band can be observed.

Stresses in this DEM model is studied using the stress homogenization/
averaging method, which is able to obtain stress tensor from discrete
elements. The stress tensors depend on the size of the averaging
volumes. Hence, several different averaging sizes are used to obtain
stress inside and outside of the shear band. Since the fabric of granular
material in the DEM calculations varies over time, the fluctuations of
stress tensors are also shown for different cases. Finally, the significance
of stress asymmetry for setting up a micropolar constitutive model is
discussed.

2. Asymmetric tensor

In this section, we consider an arbitrary asymmetric stress tensor,
which is a second order tensor with nine independent components.
An asymmetric tensor can be expressed as sum of a symmetric and a
skew symmetric tensor. The stress state of a symmetric stress tensor
can be shown graphically by Mohr circles. In this paper, a similar way
is used to show the skew symmetric stress graphically. The following
steps need to be followed to plot these graphics.

First, the tensor is transformed to a certain coordinate system, in
which only the principle stresses and the skew symmetric stresses
exist, i.e., no shear stresses.

σ1 s3 −s2
−s3 σ2 s1
s2 −s1 σ3

0
@

1
A ð1Þ

where σ1, σ2, σ3 are principle stresses and s1, s2, s3 are skew symmetric
stresses. Starting from this matrix, we rotate the coordinate system
with the principle axis to show the change of different terms. If the
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coordinate system rotates around the z axis for an angle α, the matrix
becomes:

C −S 0
S C 0
0 0 1

0
@

1
A σ1 s3 −s2
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0
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1
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0
@

1
A
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where C is cosα and S is sinα.
Hence, the skew symmetric term s1 and s2 change to s1Cα−s2Sα and

s2Cα+s1Sα. For two angles α1 and α2 with the following relationship:

α2 ¼ α1 þ π
2
: ð2Þ

We have,

Cα1 ¼ Sα2 ð3Þ

−Sα1 ¼ Cα2 ð4Þ

and

s1Cα1−s2Sα1 ¼ s2Cα2 þ s1Sα2 : ð5Þ

Hence, the difference between s1 and s2 is an angle of π/2. If we plot
the s1 versus σ2 and s2 versus σ1, the two curves will follow the same
trace. Hence, only one curve is needed to represent the change of s1
and s2 with the rotation of z axis. Similar relationships also hold for
coordinate rotation around x or y axises. Hence, for an arbitrary asym-
metric matrix, we can plot the change of skew symmetric tensor versus
coordinate system as shown in Fig. 1.

It can be seen that the skew symmetric parts are shown with three
butter fly shaped plots. The η axis is the skew symmetric part in one
direction, and the ξ axis is the sum of normal stresses in two perpendic-
ular directions. In this way, we can put the three curves together. The
left and right boundaries of the three curves touch each other and the
corresponding ξ coordinate equals to the sum of two principle stresses.
The plots indicated in red, green and blue in Fig. 1 represent skew
symmetric stress perpendicular to 1, 2 and 3 directions. We can plot
these curves for any asymmetric tensor and this relationship always
hold. See Table 1 for more plots of asymmetric tensors.

The reason of using the sum of two normal stresses as ξ axis is ex-
plained in the following. Consider the rotation of one point in amaterial
(Fig. 2), the skew symmetric stress generates a moment around the
rotational direction. The two normal stresses are both perpendicular

to the direction of rotation and have the same effect on the rotation.
Hence, the sum of these two normal stresses should be used. The
relationship between the skew symmetric stress and the sum of normal
stresses is similar to the relationship between shear stress and normal
stress in the Mohr circle. Hence, the butter fly plots use the skew
symmetric stress as the η axis and the sum of two other normal stresses
as the ξ axis.

From the butterfly shaped plots, it is easy to find out where each
asymmetric stress reaches maximum and minimum value, and what
are the corresponding normal stresses.

However, unlike the Mohr's circle, with which yield surfaces for
shearing can be defined, the butter fly plots of asymmetric tensor
alone cannot define any yield surface for rotation. The reason is that
rotation of material is a microscopic scale material behavior which
depends highly on the scale, while stress in continuummechanics is in-
dependent of the size. Hence, the asymmetry of the stress tensor cannot
define any yield conditions for the rotational degrees of freedom. Scale
dependent terms such as couple stresses will be needed. It remains an
open question how these plots can be further used. Nevertheless,
the butter fly plots offer a graphical tool to show the change of stress
asymmetry with coordinate systems. These plots are later used to
show the averaged stress of DEM simulations.

3. Stress asymmetry in granular material

In granular materials, the contact force networks [27,41], define the
stress tensor, which is generally non-symmetric. According to Bardet
and Vardoulakis [2], the asymmetry of stress tensor can be represented
with:

eijkσ jk ¼
1
V

X
c∈I

eijk xbj−xaj
� �

f ck ¼ −
1
V
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V

X
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eijkx
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where σ ij is the average stress, eijk is the permutation tensor, V is the
average volume. I and E are groups of internal and external contact
points. xja, and xj

b denote the coordinates of the centers of particles a
and b in direct contact at internal contact point c∈ I. At this interparticle
contact point the interparticle force fk

c= fk
ac=− fk

bc is applied.
xi
ae stands for the coordinates of the center of particle a, on the surface
of which an external force fj

e occurs at external contact point e∈E. Mi
ae

denotes the external moment about the center of this particle at the
external contact point e∈E, namely (see Eq. (21) of [2])

Mae
i ¼ eijk xej−xaej

� �
f ek þme

i ð8Þ

in which the external actions fke and mi
e represent the external contact

force and contact moment respectively.
Bardet and Vardoulakis [2] conclude that there is stress asymmetry

in granular media even when the particle contacts do not transmit
moments. The amplitude of stress asymmetry decreases with the ratio
V/S between surface S and volume V. Here, we make use of the averag-
ing method to verify this relationship.

4. DEM and averaging method

It has been shown by previous studies that the material behavior
of granular materials can be studied with discrete element methods
[14,15,30,40,41]. In order to study the micro–macro relationships in
granular materials, homogenization/averaging methods are used [7,19,
21,24,28].

A biaxial test is simulated with DEM using the commercial software
PFC (particle flow code) 3D 3.1. The coordinate directions are stipulated

Fig. 1. Plot of skew symmetric term according to the sum of normal stresses in two other
directions.
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