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Fractal dimension is an important parameter to characterize size distribution and shape features of particles.
However, it still remains unclear whether the fractal dimensions measured with different methods for the
same particles will have the identical results, or whether the similar quantitative relationship exists between
D3 and D2 or D3 and D1 as stated in the product–sum theorem. Silicon dioxide and potassium feldspar were se-
lected for PDS measurements and 2DSPI extractions in this paper. By introducing the concept of fractal size, D3,
D2 and D1 are defined in a unified way, and their relationships are obtained under the defined assumptions in-
cluding the product–sum theorem. The two fractional mathematical models and the three new algorithms in-
cluding the power spectrum method presented in this paper provide the solutions to the problems
encountered in themeasurement of fractal dimensions. The Gauss–Newton iterative method of R–R distribution
is superior to the existing fitted method. The four relationships of the fractal dimensions have been verified both
experimentally and by the computational models. The results show that the relationships among D3, D2 and D1

are rational and valid.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A self-similar system is called a fractal [1]. The fractal dimension has
become an important tool for characterizing objects, forms and surfaces
in some areas of science in the past three decades [2]. Its applications
can be found as widely as in nanoparticles [3–5], surface roughness
[6], aggregates [7–9], porous materials [10], floc [11], waste printed cir-
cuit boards [12] and particle surfaces [13]. A non-integer dimension is
usually defined as the fractal dimension in the engineeringpractice. Ear-
lier publications did not clearly differentiate the specific fractal dimen-
sions. In his paper, Bruce E. Logan categorized the fractal dimensions
of particles as D1, D2 and D3 which are related to the perimeter, cross-
sectional area and solid volume of particles respectively [14]. A.
Helalizadeh identified the range for the surface fractal dimension as
2 b D2 b 3, and the volume fractal dimension as 1 b D3 b 3 [15]. In this
paper, D3 represents the volume fractal dimension describing the char-
acteristic of particle size distributions (PSDs). D2 from Power spectrum
method is the surface fractal dimension for the surface of a single parti-
cle by its profile, andD1 from Yardstickmethod represents the line frac-
tal dimension for the two-dimensional single particle image (2DSPI)
profile.

Most particles satisfy the statistical self-similarity and belong to
irregular fractals. The fractal dimension is considered as a useful pa-
rameter to characterize the complexity of 2DSPIs. The measurement

methods for fractal dimensions are usually diverse in the practical
applications. A. G. Flook measured the fractal dimensions of carbon
agglomerates by the yardstick method, in which the relationship be-
tween the exponent and the fractal dimension is α=1− D1 [16,17].
Later, the power spectrum method (also known as the spectral
method), which is recognized as one of the best models with the
least independent parameters to describe natural surface geometry
qualitatively and quantitatively [18–20], was widely applied in frac-
tal studies of machined surfaces and spectroscopic. Generally, the
yardstick method requires a lot of 2DSPIs to calculate the line fractal
dimension in practical applications. The fractal dimension model for
PSDs comes from the Rosin–Rammler (R–R) distribution or the
Gaudin–Schuhmann (G–S) distribution. Li et.al studied the fractal di-
mensions of the particle images and G–S distributions from the rock
comminution [21,22], and noted that D3 ≈ D2 for brittle materials
with no abnormal cleavages [23]. Xie proposed a fractal model of
R–R distribution [24]. The exponent α in G–S distribution and the
uniformity coefficient n in R–R distribution are both equal to 3 −
D3. Yang studied the relationship between fractal dimensions and
the ultrafine coal powder from ball milling processes and obtained
that the maximum fractal dimension of PSDs as 1.02 and the mini-
mum as −0.40 for different dispersants [25,26].

Upon reviewing the previous work on fractal dimensions, it still
remains unclear whether the fractal dimensions measured with dif-
ferent methods for the same particles will have the identical results,
or whether the similar quantitative relationship exists between D3

and D2 or D3 and D1 as stated in the product–sum theorem [27]
(also known as Mandelbrot experience theorem, i.e. D2 = D1 + 1).
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It is also unclear whether the relationships among D3, D2 and D1 can
be experimentally verified.

2. The definition andmathematical models of fractal dimensions for
particles

2.1. The definition of fractal dimensions for particles

If the density for dimensionless coordinates x
*
for the randomly dis-

tributed particles in a given space is expressed asρðx*Þ, then the correla-

tion function cðr*Þ can be defined as:

c r
*

� �
≡ ρ x

*
� �

ρ x
* þ r

*
� �D E

: ð1Þ

Where〈……〉 denotes average. If the distribution in all directions
is equal, the correlation function can be expressed by the function of the
distance between the two points r. When the random distribution sat-
isfies the fractal conditions, the correlation function can only take the
power-law forms [28], i.e.

r ¼ r
*
��� ��� ; c rð Þ∝ rα αb0

r−α αN0

�
: ð2Þ

The fractal dimension Di is defined as:

Di ¼ di−α αb0; i ¼ 1; 2
αN0; i ¼ 3

�
: ð3Þ

Where di is the Euclidean space dimensions 1, 2 and 3 respectively;
Correspondently,Di represents the line fractal dimensionD1 (1 bD1 b 2)
[1], the surface fractal dimension D2 (2 b D2 b 3) and the volume fractal
dimension D3 (1 b D3 b 3). α is the power exponent.

Assume that there exists the correlation function c(rF), and the di-

mensionless coordinates x
*

F in fractal sets, and they are the one-to-
one correspondence to the correlation function c(r) and dimensionless

coordinates x
*
in Euclidean space respectively. The correlation function

c(rF) can only take the power–law forms:

r F ¼ r
*

F

��� ��� ; c r Fð Þ∝ rαF αb0
r−α
F αN0

�
: ð4Þ

Where, rF is the distance between the two points in a fractal set.
When i=1, 2, the correlation functions c(r) and c(rF), both ofwhich sat-
isfy the irregular fractal conditions, are self-similarwith the similar ratio
r−1, then

r2−D1∝r1−D1
F : ð5Þ

r3−D2∝r2−D2
F : ð6Þ

What Eqs. (5) and (6) have in common is that the sum of the power
exponents equals to the regional value of 1 in their fractal dimension
domain, which is the same as the characteristic number of the point,
the line and the surface [28]. When i = 3, the correlation functions
c(r) and c(rF), both of which satisfy the irregular fractal conditions, are
self-similar, however, their similar ratio is r−2, then

rD3−1∝rD3−3
F : ð7Þ

In Eq. (7), the sum of the power exponents still equals the regional
value of 2 in its fractal dimension domain, and it is also equal to the

Euclidean number of the polyhedron [29]. Eqs. (8), (9) and (10) have
been formulated using Eq. (5), (6) and (7).

r1−D1
F ¼ k1r2−D1 logr F ¼ 2−D1

1−D1
logr þ 1

1−D1
logk1 ð8Þ

r2−D2
F ¼ k2r3−D2 i:e logr F ¼ 3−D2

2−D2
logr þ 1

2−D2
logk2 ð9Þ

rD3−3
F ¼ k3rD3−1 logr F ¼ D3−1

D3−3
logr þ 1

D3−3
logk3 ð10Þ

Since all three fractal dimensions are unique for a given particle, the
necessary and sufficient conditions that satisfy the product–sum theo-
rem from Eqs. (8) and (9) are

2−D1

1−D1
¼ 3−D2

2−D2
;

1
1−D1

¼ 1
2−D2

: ð11Þ

Then k1= k2. Because the correspondence between r and rF is one to
one, the two straight lines are coincident in the double logarithmic co-
ordinates. Suppose, in the double logarithmic coordinates, the three
lines including the volume fractal dimension D3 are all coincident, and
let

k ¼ k1
1= 1−D1ð Þ ¼ k2

1= 2−D2ð Þ ¼ k3
1= D3−3ð Þ

: ð12Þ

Then, the relationships between rF and r can be represented as:

r F ¼ kr 2−D1ð Þ= 1−D1ð Þ ¼ kr 3−D2ð Þ= 2−D2ð Þ ¼ kr D3−1ð Þ= D3−3ð Þ: ð13Þ

Since the exponents in the equations above are all negative, the re-
ciprocal of rF is defined as fractal size sF, therefore sF=rF

−1, which re-
flects the hierarchy of the self-similarity. The mathematical models for
D3 and D1 were shown in Section 2.2. Eq. (14) has been formulated
using Eq. (13).

2−D1

1−D1
¼ 3−D2

2−D2
¼ D3−1

D3−3
ð14Þ

Thus the relationships among the three fractal dimensions should
be:

1) The relationship between D3 and D2 is:

D3 ¼ 7−2D2: ð15Þ

2) The relationship between D3 and D1 is:

D3 ¼ 5−2D1: ð16Þ

3) The relationship between D2 and D1 is:

D2 ¼ D1 þ 1: ð17Þ

4) The relationship among D3, D2 and D1 is:

D3 þ D2 þ D1 ¼ 6: ð18Þ
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