Molecular and Cellular Life Sciences: Infectious Diseases, Biochemistry and Structural Biology 2015 Conference, MCLS 2015

Characterization of Tryptophanase from Vibrio cholerae O1

Taiyeebah Nuidate ${ }^{\text {a }}$, Natta Tansila ${ }^{\text {b }}$, Kanda Panthong ${ }^{\text {c }}$, Varaporn Vuddhakul ${ }^{\text {a }}$ *
${ }^{a}$ Food Safety and Health Research Unit, Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai 901 12, Thailand
${ }^{b}$ Faculty of Medical Technology, Prince of Songkla University, Hat Yai 90112, Thailand
${ }^{c}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai 90112, Thailand

Abstract

Tryptophanase (Trpase) encoded by the tna A gene catalyzes the conversion of tryptophan to indole, which is an extracellular signaling molecule detected in various bacteria including Vibrio cholerae. Indole has been demonstrated to regulate biofilm formation, drug resistance, plasmid maintenance and spore formation of bacteria. In the present study, the tnaA gene from V. cholerae O 1 (VcTrpase) was cloned and expressed in E. coli BL21(DE3) tn5:tnaA (a Trpase-deficient competent). VcTrpase was purified by Ni^{2+}-NTA chromatography. The obtained VcTrpase had a molecular mass of approximately 49 kDa , a specific activity of $3 \mathrm{U} / \mathrm{mg}$ protein, and absorption peaks at 330 and 435 nm . Using a site-directed mutagenesis technique, replacement of Arg419 by Val resulted in a VcTrpase completely devoid of activity. Thus, this site can be a target for drug design for controlling V. cholerae.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the Molecular and Cellular Life Sciences: Infectious Diseases, Biochemistry and Structural Biology 2015 (MCLS 2015)

Keywords: V. cholerae; tryptophanase; indole

[^0]
1. Introduction

Tryptophanase (Trpase) is detected in a wide variety of bacteria. V. cholerae and many other Gram-negative bacteria use this enzyme to catalyze the conversion of L-tryptophan into indole, ammonium and pyruvate (Fig. 1) ${ }^{1}$. This enzyme is of particular interest because indole has been demonstrated to act as an extracellular signaling molecule to control virulence and biofilm formation ${ }^{2}$. Thus, tryptophanase is a useful target for novel potential inhibitors to inhibit V. cholerae biofilm formation. The aim of this work was to investigate amino acid residues in tryptophanase that could abolish its activity. Arg419 of tryptophanase has been demonstrated to bind the tryptophan substrate. Thus, in this study, arginine 419 was replaced with valine using site directed mutagenesis and the R419V mutant was evaluated.

Fig. 1. Reaction catalyzed by Trpase.

2. Methods

2.1. Strains and plasmid

V. cholerae PSU966 serogroup O1 was used for PCR amplification of the thaA gene. E. coli BL21 (DE3) tn5:tnaA was used as Trpase-deficient competent cells for expression of recombinant VcTrpase ${ }^{3}$. Plasmid pET20b $(+)$ vector containing a hexa-histidine tag (Novagen, Germany) was used for cloning and expression of the tnaA gene.

2.2. Cloning of tnaA gene

An overnight culture of V. cholerae PSU966 in Luria Bertani (LB) broth was harvested by centrifugation at $12,000 \mathrm{x} g$ for 5 min and chromosomal DNA was extracted by the phenol-chloroform method ${ }^{4}$. The thaA gene was amplified from the total DNA of V. cholerae by the polymerase chain reaction (PCR) with primers tnaA-VC-F 5'-TACATATGGAAAATTTTAAACACTTACCAGAACC-3' and tnaA-VC-R 5^{\prime} 'TTGTCGACGGCTTTTTCTT TTAAGCG-3'. The amplification cycles were 35 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 45 sec, annealing at $53^{\circ} \mathrm{C}$ for 30 sec, and extension at $72^{\circ} \mathrm{C}$ for 2 min . The PCR product was digested with NdeI and SalI enzymes and purified from agarose gel with the QIAquick Gel Extraction Kit (Qiagen, Germany). Then it was ligated to the pET20b(+) vector. The recombinant plasmid pET20b(+)-VcTrpase was transformed into E. coli BL21(DE3) tn5:tnaA host cells by the CaCl_{2} technique ${ }^{5}$. The transformants were selected on LB agar plates containing kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$) and ampicillin ($100 \mu \mathrm{~g} / \mathrm{ml}$), and screened for indole production. Then the recombinant plasmid (pET20b(+)-VcTrpase) was extracted and confirmed for the presence of the tnaA gene by PCR and DNA sequencing (Macrogen, Korea).

2.3. Site-directed mutagenesis

For amplification of the tnaA gene, site-directed mutagenesis was performed using the $\mathrm{pET} 20 \mathrm{~b}(+)-\mathrm{VcTrpase}$ as a template. To replace arginine 419 with valine, the primer pair R419V_F 5'-CCAGCCGAATTGCT CGCGTTAACCATTCCACGC-3' and R419V_R-5'-CGCTGGAATGGTTAACGCGAGCAATTCGGCTGG-3' with mutagenized codon (underlined) was used. Then the template plasmid was removed by DpnI restriction enzyme digestion. After that the R419V plasmid was transformed into E. coli BL21 (DE3) tn5:tnaA. The plasmid was extracted and the presence of the correct codon substitution in the tnaA gene was confirmed by DNA sequencing (Macrogen, Korea).

https://daneshyari.com/en/article/239962

Download Persian Version:

https://daneshyari.com/article/239962

Daneshyari.com

[^0]: * Corresponding author. Tel.: $+66-7428-8328$; fax: $\boldsymbol{+ 6 6 - 7 4 4 4 - 6 6 6 1}$

 E-mail address: varaporn.v@psu.ac.th

