
A co-modelling method for solving incompatibilities during co-design of
mechatronic devices

Yunyun Ni ⇑, Jan F. Broenink
Robotics and Mechatronics Group, CTIT Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

a r t i c l e i n f o

Article history:
Received 30 September 2013
Received in revised form 7 May 2014
Accepted 31 May 2014
Available online 11 July 2014

Keywords:
Cyber-physical systems
Co-design
Co-modelling
Event detection
Controller layered structure
Fault modelling

a b s t r a c t

The design process of mechatronic devices, which involves experts from different disciplines working
together, has limited time and resource constraints. These experts normally have their own domain-spe-
cific designing methods and tools, which can lead to incompatibilities when one needs to work together
using these those methods and tools. Having a proper framework which integrates different design tools
is of interest, as such a framework can prevent incompatibilities between parts during the design process.
In this paper, we propose our co-modelling methodology and co-simulation tools integration framework,
which helps to maintain the domain specific properties of the model components during the co-design
process of various mechatronic devices. To avoid expensive rework later in the design phase and even
possible system failure, fault modelling and a layered structure with fault-tolerance mechanisms for
the controller software are introduced. In the end, a practical mechatronic device is discussed to illustrate
the methods and tools which are presented in this paper in details.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Designing mechatronic devices is a challenging task for various
reasons: (1) There are limited time and resources (money, human)
for new innovation and assessment of mechatronic devices in cur-
rent commercial markets; (2) New devices with novel functionality
and an acceptable reliability need to reach the market before other
competing products; (3) Mechatronic device development is a
multi-disciplinary process, involving those who have domain-spe-
cific knowledge in their own field, such as electrical engineers,
software engineers and mechanical engineers. In order to accom-
plish a design process in shorter design cycles, lower cost and bet-
ter quality, engineers often use their own domain-specific design
tools to perform simulations to avoid expensive physical proto-
types in early design stages. Mechatronic devices are currently also
known as Cyber-Physical Systems (CPS), as they consist of digital
devices (computer, micro-controller, etc.) interacting with ana-
logue (continuous-time) machines. Intrinsically, CPS have their
incompatibilities, as the arithmetically and logically (binary) com-
puted controller software is executed in discrete time while the
dynamic plant is modelled in continuous time (i.e.: differential
equations). Experts from different domains have different terms
for the same concept or have the same term for different concepts.

Both these cases are problematic, which can lead to serious prob-
lems later [1].

To handle possible fatal design flaws of mechatronic devices,
modelling possible faulty behaviour of these devices and
designing software that deals with this faulty behaviour at an
early design stage is helpful to construct the actual devices
‘‘First-Time-Right’’.

Methodologically, there are two major directions to perform
modelling and simulation for CPS [2]: (1) use a homogeneous sys-
tem model, i.e. using a single modelling language to express the
whole CPS, and consequently use a single simulator and (2) use a
heterogeneous system model, i.e. using different domain-specific
modelling languages to model components from different
domains, each simulated with their own simulator, and thus need
a means to couple the involved simulators.

Using the homogeneous modelling approach, a model transfor-
mation from one domain to another is needed in order to model
CPS in one single language. This regularly involves more abstrac-
tions and simplifications than originally planned,which in general
compromises model fidelity. Furthermore, engineers from different
specific domains often have the conceptual incompatibilities as
mentioned above, causing misunderstandings and abstracting
away relevant aspects, resulting in incompetent model parts. How-
ever, the single modelling formalism approach does work in case
one of the domains is most relevant for the design: When one
domain behaviour of the system is dominant, a system model

http://dx.doi.org/10.1016/j.aei.2014.05.004
1474-0346/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +31 53 489 2626; fax: +31 53 4892223.
E-mail addresses: y.ni@utwente.nl (Y. Ni), j.f.broenink@utwente.nl (J.F. Broenink).

Advanced Engineering Informatics 28 (2014) 232–240

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2014.05.004&domain=pdf
http://dx.doi.org/10.1016/j.aei.2014.05.004
mailto:y.ni@utwente.nl
mailto:j.f.broenink@utwente.nl
http://dx.doi.org/10.1016/j.aei.2014.05.004
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


can be made in which the other domains are either ignored or sim-
plified and formulated in the formalism of the dominant domain.
For example, when the continuous-time (CT) part behaviour of
the system is dominant, a purely CT representation can be made,
in which the discrete-event (DE) part is abstracted away, or mod-
elled very concise.

The heterogeneous system modelling approach preserves the
hybrid properties of the systems by modelling the components in
their own most suitable formalism. In this way, the CT components
of CPS are modelled in one language which is best suitable for
physical-systems dynamics modelling, while the DE components
are modelled in an other appropriate modelling language. In this
case, no sacrifice in any modelling domain needs to be made. This
approach, however, has the risk that since each of the modelling
formalisms and thus simulators has its own notion of time, they
simply do not work together naturally. A proper synchronisation
scheme to couple these different simulators is therefore needed.
Simulation of such a combination takes in general more simulation
time than when a homogeneous approach was used.

The proposed approach in this paper is to perform a co-model-
ling methodology (heterogeneous system modelling methodology)
supported by a co-simulation tool framework which can address
the incompatibilities described in the previous paragraphs.

Other research work has been done related to co-modelling
methods and implementing the methods using tool frameworks:
Modelica [3] is an object-oriented, equation based multi-domain
language for simulating controlled physical systems, and provides
a number of open and closed source libraries of physical compo-
nents. However, in general, Modelica simulators cannot perform
co-simulations that combine DE and CT computation domains
together. The Functional Mockup Interface (FMI) [4] is a tool-inde-
pendent standard for exchanging data between dynamic models,
which is executed by implementing Functional Mock-up Units
(FMU) that contain concrete mathematical models describing pos-
sible events in the related models. However, as it is indicated in [5],
due to the fact that FMU is at a lower abstraction level comparing
to Modelica and more target-oriented, it is less flexible. Ptolemy II
[6] supports heterogeneous simulation from a methodology point
of view, where per diagram a Model of Computation must be
specified. It is implemented as a single tool. However, in [7,8], it
was shown that dynamic plant modelling in Ptolemy II is less
intuitive than 20-sim1 (details about this tool will be mentioned
later in Section 2.2.3).gCSP [9] is to graphically model concurrent
process-oriented software based on the CSP formalism [10].
Co-simulation of networked control systems has been tried out
[11], but the tool never reached maturity. Cosimate2 is a backplane
co-simulation tool offering interfaces to tools like Simulink,
Modelsim, Modelica. Only time synchronisation is supported as
exchanging data between simulators every time step. Cosimate has
been tried out on the control of a mechatronic test set up [12]. The
two discipline-specific models involved have to be connected in a
rather cumbersome way.

In this paper, we discuss how our co-modelling method can
help to solve the incompatibilities coming along with the designing
process of mechatronic devices. In Section 2, we present some
essential modelling and simulation concepts, explaining our mod-
elling top-level structure, the details about the co-simulation tool
integration framework. In order to make the design process of
mechatronic devices ‘‘First-Time-Right’’, details about fault model-
ling and its corresponding controller software fault handling will
also be introduced. Section 3, the introduced methods and the tools
are demonstrated by using an existing mechatronic device as an

example. Finally, conclusions are drawn and directions for future
work are indicated in Section 4.

2. Approach

In Section 2.1, the proposed co-modelling concepts and meth-
ods are introduced, following by details about the co-simulation
tool integration framework in Section 2.2. Fault modelling and
fault handling in controller software are presented in Section 2.3.

2.1. Modelling methodology

To avoid unnecessary misunderstanding about commonly used
terms in this paper for readers from different background
(domains), a short explanation about concepts related with
co-modelling is included.

Co-modelling is a heterogeneous modelling approach in which
different, domain-specific modelling methodologies are used. It is
supported by a co-simulation tool framework which integrates
different domain-specific tools. The simulators under the co-
simulation framework are connected through a co-simulation
engine. The details about the synchronisation schemes among
different tools are explained in Section 2.2.

Collaborative modelling is one step of the whole co-design pro-
cess, which means more than one person is working together.
Engineers from different domains can perform collaborative
modelling, but this process does not necessarily need to be a
co-modelling process unless the tools can synchronise with each
other. Details about collaborative modelling on a pilot study can
be found in [1].

Our proposed co-modelling approach is one of the options to
perform collaborative modelling. It is considered as less error-
prone than those depending purely on human communication,
since there, the human factors involved easily introduce unneces-
sary faults.

2.1.1. System top-level model
In our methodology, a mechatronic device is divided into sev-

eral top-level components as shown in Fig. 1: Controller, IO and
Plant. The Controller (DE domain) block represents the control
algorithm and/or logic, which ultimately get implemented in a
control computer. The Plant (CT domain) block models plant
dynamics, which involve the relevant physics domains, like electri-
cal, mechanic, pneumatic, hydraulic, and thermal. The data conver-
sion between the controller and the plant (as is needed to connect
the two different modelling domains) is modelled in the IO block,
as it is also there in the real system. I/O components such as A/D, D/
A converters, Samplers, Zero-Order Holds are modelled inside this
IO block as well. The discrete-event parts of the IO block (i.e.
which will eventually be implemented in the control computer)
are modelled in DE domain, while its continuous-time parts are
modelled in CT domain. This is indicated in Fig. 1 by the IO block
having two different background shades.

2.2. Tool integration framework

2.2.1. General concepts
In this paper, we use the concept of co-model and co-simulation

to express and execute CPS models [13]. A co-model is a model

Fig. 1. Top-level structure of the system model.

1 www.20sim.com.
2 www.chiastek.com/products/cosimate.html.

Y. Ni, J.F. Broenink / Advanced Engineering Informatics 28 (2014) 232–240 233

http://www.20sim.com
http://www.chiastek.com/products/cosimate.html


Download English Version:

https://daneshyari.com/en/article/241983

Download Persian Version:

https://daneshyari.com/article/241983

Daneshyari.com

https://daneshyari.com/en/article/241983
https://daneshyari.com/article/241983
https://daneshyari.com

