Applied Energy 180 (2016) 169-184

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review

School of Mechanical Engineering, VIT University, Vellore 632 014, India

- Demonstrated EGR effectiveness on advanced diesel combustion and alternative fuels.
- Rendered a comprehensive outlook on EGR designs and measurement methods.
- Extensive classification and comparison of EGR configurations are carried out.
- Examined the engine combustion, emission characteristics with EGR from 0 to 70%.
- Adverse effects of EGR on engine wear and oil contamination are highlighted.

ARTICLE INFO

Article history: Received 3 March 2016 Received in revised form 17 July 2016 Accepted 25 July 2016

Keywords: Exhaust gas recirculation Engine wear Homogeneous charge compression ignition Lube oil deterioration Biodiesel-NO_x

ABSTRACT

Ever since the establishment of the California Air Resources Board (CARB) in 1968 and Environmental Protection Agency (EPA) in 1970, significant strides have been made in diesel engine emission control technology. The diesel emission control is being achieved using strategies involving in-situ and after-treatment techniques and even with their effective combinations. Among these techniques, recirculation of the exhaust gases back to the engine inlet is an in-situ approach for Nitrogen Oxides (NO_x) control. Moreover, exhaust gas recirculation (EGR) has been used for controlling the onset of combustion process. In the current review, the importance of EGR for advanced diesel combustion like homogeneous charge compression ignition (HCCI) or low-temperature combustion (LTC) system and the requirement of EGR with the use of alternate fuels are discussed. In order to facilitate better understanding, the adverse effects of EGR, the impact of EGR on diesel engine wear and lube oil deterioration is also highlighted. @ 2016 Elsevier Ltd. All rights reserved.

Contents

170
171
172
174
174
174
175
175
177
177
179
180
180
182
182

* Corresponding author.

E-mail addresses: thangaraja,j@vit.ac.in (J. Thangaraja), kannan.chidambaram@vit.ac.in (C. Kannan).

http://dx.doi.org/10.1016/j.apenergy.2016.07.096 0306-2619/© 2016 Elsevier Ltd. All rights reserved.

Nomenciature					
	ARC	Active Radical Combustion	HSDI	High speed Direct Injection	
	ATAC	Active Thermo Atmospheric Combustion	HVO	Hydrogenated Vegetable Oil	
	CA	Crank Angle	IEGR	Internal Exhaust Gas Recirculation	
	CARB	California Air Resources Board	IMEP	Indicated Mean Effective Pressure	
	CFR	Co Operative Fuel Research	Lambda λ	Excess Air Factor	
	CI	Compression Ignition	LNT	Low NO _x Trap	
	CN	Cetane Number	LPL	Low Pressure Loop	
	CO	Carbon Monoxide	LTC	Low Temperature Combustion	
	CO ₂	Carbon Dioxide	MK	Modulated Kinetics	
	COMF	Combustible Oxygen Mass Fraction	NO _x	Nitrogen Oxides	
	CRDI	Common Rail Direct Injection	NTU	Number of Transfer Units	
	CRT	Continuous Regeneration Trap	PAH	Poly Aromatic Hydrocarbons	
	DME	Dimethyl Carbonate	PCCI	Premixed Charge Compression Ignition	
	DME	Dimethyl Ether	PCI	Premixed Combustion Ignition	
	DOC	Diesel Oxidation Catalyst	PFI	Port Fuel Injection	
	DPF	Diesel Particulate Filter	PM	Particulate Matter	
	DR	Dilution Ratio	PPCCI	Partially Premixed Charge Compression Ignition	
	EDAX	Energy Dispersive X Ray Analysis	PSD	Particle Size Distribution	
	EELS	Energy Electron Loss Spectroscopy	RME	Rapeseed Methyl Ester	
	EGR	Exhaust Gas Recirculation	SCR	Selective Catalytic Reduction	
	EMS	Electronic Mobility Spectrometer	SEM	Scanning Electron Microscope	
	EPA	Environmental Protection Agency	SI	Spark Ignition	
	ESR	Electron Spin Resonance	SOI	Start of Injection	
	FTP	Federal Test Procedure	SVO	Straight Vegetable Oil	
	$H_2O(v)$	Water Vapor	TDC	Top Dead Centre	
	HC	Hydrocarbons	TEM	Transmission Electron Microscope	
	HCCI	Homogeneous Charge Compression Ignition	VGT	Variable Geometry Turbocharging	
	HPL	High Pressure Loop	VVT	Variable Valve Timing	
	HRTEM	High Resolution Electron Microscopy			

1. Introduction

Over the last five decades, the vehicle population across the globe has grown significantly. The concern over vehicular pollution increased steadily after 1960s Los Angeles episode. It is wellknown that vehicular emissions vary with engine type, operating conditions and fuel utilized, and all these aspects need to be addressed simultaneously for their abatement. The severity of engine pollutant depends on their concentration and exposure time and severely affects human health. Owing to inherent fuel economy advantage, diesel engines have made inroads into automotive applications beside their usual stationary domain. However, the diesel fuel operated vehicles are the major source of NO_x and particulate emissions and responsible for the deterioration of ambient air quality. Many countries like Brazil, China, Sri Lanka, Denmark and Paris are in the process of eliminating diesel vehicles and enforcing heavy taxes and levies on such vehicles. Recently, Indian government banned the registration of dieselrun private cars with capacity of 2000 CC and above in certain cities [1]. It is imperative that, the sustenance of diesel operated engines is possible with ultra-low emissions and lower fuel consumption. Numerous research works have been carried out on the influence of in-cylinder mixture formation and diesel combustion process [2–4]. The NO_x-PM trade-off in diesel engines is a classical challenge for developing emission control technology and hence stands at the forefront of diesel engine development. The NO_v/PM emission could be restricted through in-cylinder control measures well ahead of their formation, or through aftertreatment control devices which involve the conversion of NO_x/ PM emission to relatively benign compounds [5]. Achieving lower NO_x and PM emissions, particularly in diesel engines, through in-cylinder technologies presents a formidable challenge, whilst developing after-treatment technologies to handle them individually is economically unattractive. A comprehensive summary of various strategies for controlling diesel NO_x and PM emissions is provided in Fig. 1.

Among various strategies, recirculation of exhaust gases (EGR) is an established and effective technology for NO_x inhibition in diesel engines [6,7]. In the diesel engines, even up to 50% or more of exhaust gas can be recycled. However, in the case of petrol engines, the maximum EGR is limited to 20% without affecting combustion stability [8]. Johnson [9] in a review highlighted that advanced engines will have significant amount of EGR to meet the stringent emission norms.

Abd-Alla [10] reviewed the NO_x reduction potential of EGR in diesel, gasoline and dual fuelled engines. The author recommended that adding EGR along with the intake air of diesel engine has higher NO_x reduction potential than the air displacement method. In the case of gasoline engines, substantial NO_x reduction is reported with 10–25% EGR with a penalty in combustion stability. Simultaneous reduction of NO_x and smoke is observed with EGR operated dual fuelled engine. Further, the author concluded that the usage of EGR is the most effective way in improving exhaust emissions. Zheng et al. [7] reviewed the various ways of implementing EGR and its threshold limits for NO_x reduction. Further, the authors analysed the impact of EGR on diesel operations and proposed conceptual designs for EGR fuel reformer.

Thus, the future diesel vehicles demand engine modifications as well high quality fuels to adhere with stringent emission norms. It is inferred that, EGR has become an essential control strategy for both advanced combustion engines [11] and alternate fuelled engine applications [12,13]. Detailed discussions on the influence

Download English Version:

https://daneshyari.com/en/article/242447

Download Persian Version:

https://daneshyari.com/article/242447

Daneshyari.com