
Computer Algorithm for the Recursive Method of
Calculating Large Numerator Relationship Matrices

G.F.S. HUDSON, R. L. QUAAS, and L. D. VAN VLECK
Department of Animal Science

Cornell University
Ithaca, NY 14853

ABSTRACT

A method of storing and retrieving
nonzero elements of a large, sparse
symmetric matrix using only internal
computer storage is presented. An al-
gorithm for applying the recursive or
tabular method of calculating the nu-
merator relationship matrix of a large
group of animals is given. The algorithm
is applicable to inbred and noninbred
populations and can be used on sire/dam
or sire/maternal grandsire pedigrees.

INTRODUCTION

Wright's (9) coefficients of relationship and
inbreeding are calculated most easily by the
well-known recursive or tabular method at-
tributed to J. L. Lush by Emik and Terrill (1).
Henderson (4) and Quaas (6) have developed
methods for computing the inverse of the
numerator relationship matrix required for best
linear unbiased predictions (BLUP) of breeding
values (3) without calculating and inverting the
matrix directly. However, knowledge of re-
lationships among a group of animals is useful
for examining the effect of, and preventing,
inbreeding. Furthermore, the numerator re-
lationship matrix, A say, is required if re-
lationships among animals are incorporated into
variance component estimation models (8).

This paper describes an algorithm for storing
and computing A for large groups of animals.
The method is explained by the hypothetical
example of Table 1 in which animals have been
numbered consecutively in decreasing age
order. The corresponding relationship matrix is
in Table 2.

STORING NONZERO ELEMENTS OF A

Suppose A has order N ~ and contains n

Received February 26, 1982.

nonzero elements in the upper half (i.e., on and
above the diagonal). The ijth element, aij,
is the numerator relationship between animals i
and j. The entire upper half could be stored in a
single array of dimension N(N + 1)/2, but
computer storage space becomes limiting when
N is more than a few hundred. The method
presented requires storing only nonzero elements
as half-word integers in an array of dimension
n. Two half-word integer arrays, of dimension n
and N, store information necessary to recover a
given element of the original matrix A. On the
IBM 3 70 computer a full-word (or long) integer
requires 32 bits of memory whereas a half-word
(or short) integer uses only 16 bits of memory.
The capability to use half-word integers is
dependent on the computer available, but the
principles are applied easily to any system.

To reduce storage requirements and increase
the order of the matrix that can be calculated,
relationship coefficients are expressed as
integers by multiplication by a large power of
2, e.g., 214 . The integers can be stored in a
half-word integer array rather than the full-word
floating-point array necessary to store a decimal
fraction. For example, relationships 1/2, 3/8,
5/16 are stored as 8192, 6144, and 5120. Other
coefficients are expressed in a similar manner.
For clarity in this paper, relationships are left in
more familiar decimal form.

The storage method is similar to Scheme II
of (7). Nonzero elements of the upper-half of A
are stored in rows: in one array, COEFF, of
dimension n (Table 3). The column subscripts
of off-diagonal elements of A are stored in a
half-word integer array of dimension n, COL.
For example, the l l t h location in COEFF
contains an element of the 5th column of A.
Locations of diagonal elements in COEFF are
stored in a half-word integer array, ROW, of
dimension N. For example, the location of the
4th diagonal in COEFF is stored in the 4th
entry of ROW. Table 3 shows the contents of
the arrays after all calculations have been

1982 J Dairy Sci 65:2018--2022 2018

TECHNICAL NOTE 2019

TABLE 1. Example pedigree.

Animal Sire Dam

1 . • a . . •

2

3
4 1"" ; ' "
5 2 3
6 2
7 2 6""

a Mtssmg mformat~on.

completed. At the beginning of the computa-
tions n is unknown, so the necessary length of
COEFF and COL has to be estimated.

Recovery of any particular element of A is
accomplished by searching for the column
subscript in the interval of COL defined by
the diagonal elements of the current and next
rows. Within each row, the elements of COL are
in strictly increasing order; thus, a bisection
search can be used to determine the location or
absence of the required column subscript.
Efficient search algorithms are in (5), but an
outline of a bisection search follows. The
int.erval of COL that contains the column
subscripts of the appropriate row is bisected to
find the approximate midpoint of the interval.
The entry of COL at the midpoint is compared
with the search argument, and the upper or
lower half of the interval is taken as a new
interval depending on whether the midpoint is
less than or greater than the search argument.
The process continues until the required entry
is found at the midpoint or until the interval
collapses in which case the search argument is
not in the original interval. If an element below

the diagonal is required, e.g., ai,j with i > j, the
subscripts must be interchanged because only
the upper half of A is stored. Recovery of
diagonal elements requires only the location
in ROW, e.g., a3,3 is known to be stored in
COEFF (7) as ROW (3) contains 7.

PROCEDURE FOR CALCULATING
NONZERO ELEMENTS OF A

Animals must be identified in decreasing age
order with sequential numbers from 1 to N, so
that 1 identifies the oldest animal and N the
youngest. Sire and dam identification for each
animal are stored in two half-word integer
arrays each of dimension N. A zero is stored if
parental information is missing.

For each row of A, the diagonal element is
calculated first, followed by all off-diagonals to
the right of the diagonal. In the last row there
are no off-diagonals, but the diagonal has to be
computed for completeness of the matrix.
Explanation of the algorithm is simplier if we
assume that the first i - 1 rows have already
been computed and stored in the manner
described in the previous section.

The diagonal element of the ith row, aii, is 1
+ fi, where fi = 1/2 ajk is the inbreeding co-
efficient of the ith animal and j and k are the
sire and dam of the ith animal (not necessarily
respectively), with k > j for the search procedure.
If either sire or dam identification is missing or
if ajk = 0, then aii = 1, except as indicated
below where only sire and maternal grandsire
are identified. The aii is stored in the next
available entry of COEFF, and its posit ion
stored in the ith entry of ROW. (A counter is
needed to keep track of the number of filled
entries in COL and COEFF.)

TABLE 2. Numerator relationship matrix for the example of Table 1.

Animal 1 2 3 4 5 6 7

1 1 0 0 1 /2 0 0 0
2 0 1 0 0 1/2 1/2 3/4
3 0 0 1 1/2 1/2 0 0
4 1/2 0 1/2 1 1/4 0 0
5 0 1/2 1/2 1/4 1 1/4 3/8
6 0 1 /2 0 0 1 /4 1 3/4
7 0 3/4 0 0 3/8 3/4 1+1/4

Journal of Dhiry Science Vol. 65, No. 10, 1982

Download English Version:

https://daneshyari.com/en/article/2446406

Download Persian Version:

https://daneshyari.com/article/2446406

Daneshyari.com

https://daneshyari.com/en/article/2446406
https://daneshyari.com/article/2446406
https://daneshyari.com

