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ABSTRACT 

A method of storing and retrieving 
nonzero elements of a large, sparse 
symmetric matrix using only internal 
computer storage is presented. An al- 
gorithm for applying the recursive or 
tabular method of  calculating the nu- 
merator relationship matrix of a large 
group of  animals is given. The algorithm 
is applicable to inbred and noninbred 
populations and can be used on sire/dam 
or sire/maternal grandsire pedigrees. 

INTRODUCTION 

Wright's (9) coefficients of relationship and 
inbreeding are calculated most easily by the 
well-known recursive or tabular method at- 
tributed to J. L. Lush by Emik and Terrill (1). 
Henderson (4) and Quaas (6) have developed 
methods for computing the inverse of the 
numerator relationship matrix required for best 
linear unbiased predictions (BLUP) of  breeding 
values (3) without calculating and inverting the 
matrix directly. However, knowledge of re- 
lationships among a group of  animals is useful 
for examining the effect of, and preventing, 
inbreeding. Furthermore, the numerator re- 
lationship matrix, A say, is required if re- 
lationships among animals are incorporated into 
variance component estimation models (8). 

This paper describes an algorithm for storing 
and computing A for large groups of animals. 
The method is explained by the hypothetical 
example of Table 1 in which animals have been 
numbered consecutively in decreasing age 
order. The corresponding relationship matrix is 
in Table 2. 

STORING NONZERO ELEMENTS OF A 

Suppose A has order N ~ and contains n 
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nonzero elements in the upper half (i.e., on and 
above the diagonal). The ijth element, aij, 
is the numerator relationship between animals i 
and j. The entire upper half could be stored in a 
single array of dimension N(N + 1)/2, but 
computer storage space becomes limiting when 
N is more than a few hundred. The method 
presented requires storing only nonzero elements 
as half-word integers in an array of  dimension 
n. Two half-word integer arrays, of dimension n 
and N, store information necessary to recover a 
given element of  the original matrix A. On the 
IBM 3 70 computer a full-word (or long) integer 
requires 32 bits of  memory whereas a half-word 
(or short) integer uses only 16 bits of  memory. 
The capability to use half-word integers is 
dependent on the computer available, but the 
principles are applied easily to any system. 

To reduce storage requirements and increase 
the order of the matrix that can be calculated, 
relationship coefficients are expressed as 
integers by multiplication by a large power of  
2, e.g., 214 . The integers can be stored in a 
half-word integer array rather than the full-word 
floating-point array necessary to store a decimal 
fraction. For example, relationships 1/2, 3/8, 
5/16 are stored as 8192, 6144, and 5120. Other 
coefficients are expressed in a similar manner. 
For clarity in this paper, relationships are left in 
more familiar decimal form. 

The storage method is similar to Scheme II 
of (7). Nonzero elements of the upper-half of A 
are stored in rows: in one array, COEFF, of 
dimension n (Table 3). The column subscripts 
of off-diagonal elements of A are stored in a 
half-word integer array of  dimension n, COL. 
For example, the l l t h  location in COEFF 
contains an element of the 5th column of A. 
Locations of diagonal elements in COEFF are 
stored in a half-word integer array, ROW, of  
dimension N. For example, the location of  the 
4th diagonal in COEFF is stored in the 4th 
entry of ROW. Table 3 shows the contents of  
the arrays after all calculations have been 
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TABLE 1. Example pedigree. 

Animal Sire Dam 

1 . • a . . • 

2 . . . . . .  

3 
4 1"" ; ' "  
5 2 3 
6 2 
7 2 6"" 

a . . . .  Mtssmg mformat~on. 

completed. At  the beginning of the computa- 
tions n is unknown, so the necessary length of  
COEFF and COL has to be estimated. 

Recovery of any particular element of  A is 
accomplished by searching for the column 
subscript in the interval of COL defined by 
the diagonal elements of the current and next  
rows. Within each row, the elements of COL are 
in strictly increasing order; thus, a bisection 
search can be used to determine the location or 
absence of  the required column subscript. 
Efficient search algorithms are in (5), but  an 
outline of a bisection search follows. The 
int.erval of COL that  contains the column 
subscripts of the appropriate row is bisected to 
find the approximate midpoint  of the interval. 
The entry of  COL at the midpoint  is compared 
with the search argument, and the upper or 
lower half of the interval is taken as a new 
interval depending on whether the midpoint  is 
less than or greater than the search argument. 
The process continues until the required entry 
is found at the midpoint  or until  the interval 
collapses in which case the search argument is 
not  in the original interval. If an element  below 

the diagonal is required, e.g., ai,j with i > j, the 
subscripts must be interchanged because only 
the upper half of A is stored. Recovery of  
diagonal elements requires only the location 
in ROW, e.g., a3,3 is known to be stored in 
COEFF (7) as ROW (3) contains 7. 

PROCEDURE FOR CALCULATING 
NONZERO ELEMENTS OF A 

Animals must  be identified in decreasing age 
order with sequential numbers from 1 to N, so 
that 1 identifies the oldest animal and N the 
youngest. Sire and dam identification for each 
animal are stored in two half-word integer 
arrays each of dimension N. A zero is stored if 
parental information is missing. 

For  each row of A, the diagonal element is 
calculated first, followed by all off-diagonals to 
the right of the diagonal. In the last row there 
are no off-diagonals, but  the diagonal has to be 
computed for completeness of the matrix. 
Explanation of the algorithm is simplier if we 
assume that  the first i - 1 rows have already 
been computed and stored in the manner 
described in the previous section. 

The diagonal element of the ith row, aii, is 1 
+ fi, where fi = 1/2 ajk is the inbreeding co- 
efficient of the ith animal and j and k are the 
sire and dam of the ith animal (not necessarily 
respectively), with k > j for the search procedure. 
If  either sire or dam identification is missing or 
if ajk = 0, then aii = 1, except  as indicated 
below where only sire and maternal grandsire 
are identified. The aii is stored in the next  
available entry of COEFF, and its posit ion 
stored in the ith entry of ROW. (A counter is 
needed to keep track of  the number of filled 
entries in COL and COEFF.)  

TABLE 2. Numerator relationship matrix for the example of Table 1. 

Animal 1 2 3 4 5 6 7 

1 1 0 0 1 /2  0 0 0 
2 0 1 0 0 1/2 1/2 3/4 
3 0 0 1 1/2 1/2 0 0 
4 1/2 0 1/2 1 1/4 0 0 
5 0 1/2 1/2 1/4 1 1/4 3/8 
6 0 1 /2  0 0 1 /4  1 3/4 
7 0 3/4 0 0 3/8 3/4 1+1/4 
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