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a b s t r a c t

In this paper we propose a powerful tool for the evaluation of the initial post-buckling behavior of multi-
layered composite shells and beams in both bifurcation and limit load cases, including mode interaction
and imperfection sensitivity. This tool, based on the joint use of a specialized Koiter asymptotic method
and a mixed solid-shell finite element model, is accurate, simple and characterized by a computational
cost far lower than standard path-following approaches and many advantages with respect to asymptotic
analysis performed with shell elements. The method is very simple and easy to include in existing FE
codes because it is based on the same ingredients of a linearized buckling analysis, with very light
formula due to the presence of displacement degrees of freedom only. Due to its efficiency it is suitable
for layup design when geometrical nonlinearities have to be considered.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-layered composite structures are an important and grow-
ing feature of engineering construction with the areas of applica-
tion becoming increasingly diverse, ranging from aerospace and
mechanical to civil engineering. Many factors have contributed to
this growth, among which is the weight economy that requires
the use of optimized thin-walled structures for which buckling
often becomes the design constraint. As a consequence of the
design process the structural behavior is often dominated by coin-
cident, or almost coincident, buckling loads and by buckling mode
interaction phenomena with a potentially, strongly unstable post-
critical behavior. In light of this a sensitivity analysis [1–3], that is
the evaluation of the limit load for a set of possible external imper-
fections, becomes mandatory. Furthermore the layup optimization
requires a large number of numerical experiments to consider not
only the linear and the buckling behavior but, more correctly, the
post-critical one, including the limit load evaluation for the worst
imperfection case [4–6]. Standard path-following approaches,
aimed at recovering the equilibrium path for a single loading case
and assigned imperfections, are not suitable for this purpose due to
the high computational burden of the single run and being
unusable if no ‘‘a priori” information about the worst imperfection
shapes is available.

The asymptotic approach, derived as a finite element (FE)
implementation [7–9] of the Koiter nonlinear theory of elastic sta-
bility [10], can be a convenient alternative as it provides an effec-
tive and reliable strategy for predicting the initial post-critical
behavior in both cases of limit or bifurcation points, including
modal interactions [11–13]. It has also been applied to the study
of composites in [14,15]. An extension to dynamic effects can be
found in [16]. The most interesting feature of the method is that,
once the analysis of the so-called perfect structure has been per-
formed, the presence of small loading imperfections or geometrical
defects can be taken into account in a post-processing phase with a
negligible computational extra-cost, so allowing an inexpensive
imperfection sensitivity analysis [6,4,5]. It is also possible to obtain
information about the worst imperfection shapes [17], and it can
be used to improve the imperfection sensitivity analysis or to
address more detailed investigations through specialized path-
following analysis [18–20]. The accuracy of the method has been
confirmed by numerical testings and theoretical investigations
[21] but it requires great care in both the mechanical modeling
[22,23] and finite element implementation to avoid: (i) interpola-
tion locking phenomena in the evaluation of the energy variation
terms [24,25,1]; (ii) extrapolation locking phenomena [26,27] due
to an inappropriate format used in the control variables.

Although this great amount of work aimed to make the
method a general tool in a finite element context suitable for
practical design, a series of limitations still exists. In particular
for geometrically exact [22,23] or corotational [28,29] beam and
shell models that use 3D finite rotations [30], the asymptotic
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analysis is highly penalized by the complex and expensive
expressions of the high order strain energy variations. In this con-
text they are so complex to evaluate [31] that usually simplified
assumptions on the kinematics or on the precritical behavior
are necessary leading, however, to a not ‘‘a priori” evaluable loss
of accuracy. Furthermore, as the method is based on a fourth
order energy expansion, in the multimodal case it requires the
evaluation of a number of strain energy variations proportional
to m4 where m is the number of buckling modes considered. Con-
sequently the computational cost of the Koiter analysis quickly
grows with m.

Although the formulation is a very suitable tool for sensitivity
analysis these limits influence its performances in terms of both
computational cost and accuracy and have penalized its diffusion
in the scientific community and in the commercial codes.

In recent years an increasing amount of research has aimed at
developing new efficient solid-shell finite elements [32,33] for
the linear and nonlinear analysis of thin structures. This is due to
the advantages of this kind of elements in comparison to classical
shell ones. In particular they allow the use of the 3D continuum
strain measures employing translational degrees of freedom only
[34–36] and so the avoidance of complex and expensive rules for
updating the rotations. In particular, the Green–Lagrange strain
measure, describes the structural behavior coherently through a
low order dependence on the displacement field, and consequently
gives simpler expressions for the strain energy and its variations in
comparison with beam and shell models [22,23,37]. To maintain an
acceptable number of degrees of freedom, the solid-shell elements
are usually based on a low order displacement interpolation. Con-
sequently they show locking phenomena: the shear and membrane
locking also present in classical shell elements and trapezoidal and
thickness locking, typical of low order solid-shell elements [38].
These lockings are usually sanitized by means of Assumed Natural
Strain, Enhanced Assumed Strain [39–41] and mixed (hybrid) for-
mulations [32,42,43]. In this way solid-shell elements have now
reached a high level of efficiency and accuracy and have also been
used to model composites or laminated beams [40,42,44] and shell
structures in both the linear [39,35,45] and nonlinear [41,34,32]
range. Among the most effective and interesting proposals there
are the mixed solid-shell elements of Sze and co-authors [46–48]
which extend the initial PT18b hybrid element of Pian and Tong
to thin shell.

The aim of this paper is to overcome the limitations previously
described making the Koiter analysis a powerful tool for the eval-
uation of the initial post-buckling behavior of multi-layered com-
posite shells and beams in both cases of bifurcation and limit
load, including mode interaction and imperfection sensitivity. This
tool, based on the joint use of a specialized Koiter asymptotic
method and a mixed solid-shell finite element model with a thick-
ness pre-integration, is accurate, simple and characterized by a
computational cost far lower than standard path-following
approaches and has many advantages with respect to asymptotic
analysis performed with shell elements.

The use of a mixed solid-shell element based on the quadratic
Green–Lagrange strain measure allows the representation of the
strain energy as a third order polynomial function of the finite ele-
ment variables. Exploiting this property, it is possible to develop a
new asymptotic algorithm which is more accurate and computa-
tionally efficient, than that based on classical shell elements
because: (i) an exactly linear buckling condition is obtained with-
out the need of any simplified assumption on the kinematics or the
precritical behavior, a part from the linear extrapolation of the fun-
damental path; (ii) the simple an low cost expressions of the strain
energy variations with the fourth order ones which are exactly
zero; (iii) a more coherent reduced nonlinear equations used for
the evaluation of the equilibrium path.

It is important to note as the linear extrapolation of the funda-
mental path gives completely different results when a mixed
(stress and displacement) or a displacement description of the
problem are adopted. The mixed description allows, in fact, the
elimination of the extrapolation locking phenomenon discussed
in detail in [49,26] in the context of path-following analysis and
in [31,13,50] for asymptotic analyses. The extrapolation locking
affects any displacement model and consists in an overestimated
stiffness evaluated in an extrapolated point. The mixed formula-
tion, not affected by this phenomenon, ensures: in path-
following analysis, a faster convergence of the Newton (Riks) iter-
ative process, noted by many authors (see for example [32,34]); in
asymptotic analysis, a more accurate linearized buckling analysis
and then an accurate recovery of the equilibrium path, even when
the precritical behavior is not linear.

Finally it is worth mentioning that the use of both displacement
and stress variables increases the dimension of the problem, but
generally the computational extra-cost, with respect to a displace-
ment formulation, is very low. In fact performing a static conden-
sation of the stress variables, locally defined at element level, the
global operations involve displacement dofs only. The resulting
small computational extra-cost is largely compensated by the
zeroing of the computationally expensive fourth order strain
energy variations.

The proposed method is very simple and easy to use in existing
FE codes because it is based on the same ingredient, that is a lin-
earized buckling analysis, with very light formula due to the pres-
ence of displacement degrees of freedom only. Due to its efficiency
it is suitable for layup design when geometrical nonlinearities have
to be considered [51].

The paper is organized as follows: Section 2 presents the mixed
solid-shell finite element for multi-layered composite structures;
Section 3 derives the new Koiter asymptotic algorithm that
exploits the third order only dependence of the strain energy on
the FE parameters; Section 4 presents some numerical tests and
discusses the accuracy of the proposed framework; finally the con-
clusions are reported in Section 5.

2. The mixed solid-shell finite element

In this section we briefly recall the mixed solid-shell finite ele-
ment proposed by Sze et al. in [42] that is an effective extension of
the initial PT18b hybrid element of Pian and Tong [52] to compos-
ite shell structures. The element is presented in a total Lagrangian
formulation in order to be used in the Koiter strategy.

2.1. Kinematics in convective frame

We consider a solid finite element and denote with f ¼ fn;g; fg
the convective coordinates used to express the FE interpolation in
natural coordinates. The initial configuration, assumed as refer-
ence, is described by the position vector X½f� � fX½f�;Y½f�; Z½f�g
while x½f� represents the same position in the current configura-
tion. They are related by the transformation

x½f� ¼ X½f� þ d½f� ð1Þ

where d½f� is the displacement field. Adopting the convention of
summing on repeated indexes, the covariant Green–Lagrange strain
measure components are

�eij ¼
1
2

X;i � d;j þ d;i � X;j þ d;i � d;j
� �

with i; j ¼ n;g; f ð2Þ

where a comma followed by k denotes the derivative with respect
to k and ð�Þ denotes the scalar product. The position vector of a point
inside the element and its displacement are interpolated, using a
trilinear 8 node hexahedron, as
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