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a b s t r a c t

The performance of different chemometric approaches was evaluated in the spectrophotometric de-
termination of pharmaceutical mixtures characterized by having the amount of components with a very
high ratio. Principal component regression (PCR), partial least squares with one dependent variable
(PLS1) or multi-dependent variables (PLS2), and multivariate curve resolution (MCR) were applied to the
spectral data of a ternary mixture containing paracetamol, sodium ascorbate and chlorpheniramine
(150:140:1, m/m/m), and a quaternary mixture containing paracetamol, caffeine, phenylephrine and
chlorpheniramine (125:6. 25:1.25:1, m/m/m/m). The UV spectra of the calibration samples in the range of
200–320 nm were pre-treated by removing noise and useless data, and the wavelength regions having
the most useful analytical information were selected using the regression coefficients calculated in the
multivariate modeling. All the defined chemometric models were validated on external sample sets and
then applied to commercial pharmaceutical formulations. Different data intervals, fixed at 0.5, 1.0, and
2.0 point/nm, were tested to optimize the prediction ability of the models. The best results were obtained
using the PLS1calibration models and the quantification of the species of a lower amount was sig-
nificantly improved by adopting 0.5 data interval, which showed accuracy between 94.24% and 107.76%.
& 2015 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. All rights reserved. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spectrophotometric analytical techniques are widely used in
the pharmaceuticals and food quality controls during the batch
production or stability controls. This choice is justified by the
simplicity of sample preparation and execution as well as by the
short analysis time and relatively lower cost than other analytical
techniques [1,2]. However, the techniques based on ordinary
spectrophotometry are affected by low resolution and are often
unsatisfactory in the analysis of complex mixtures [3–6]. Several
pharmaceuticals are multicomponent mixtures and often are dif-
ficult to be analyzed because of overlapping signals or the pre-
sence of components in much lower concentration than the oth-
ers. In recent years, the advent of computerized instrumentation
coupled to multivariate analysis techniques has allowed to in-
crease the potential of the spectrophotometric analysis with the
ability to simultaneously process a large number of spectral data
recorded in turn by a high number of samples [7,8]. Analysis of
complex pharmaceutical mixtures by applying different chemo-
metric procedures on spectral data has been reported in many

papers [9–13]. Multivariate curve resolution-alternating least
squares (MCR–ALS) has been applied to the study of complex
mixtures to resolve different components in pharmaceutical for-
mulation [14–19].

In building a calibration sample set, an appropriate design of
experiments (DOE) can affect the prediction ability of the multi-
variate models. In the present work, a simple latex design (SLD)
distributed on five concentration levels was applied in order to
select sets of reference mixtures covering the entire experimental
domain corresponding to the content of the commercial phar-
maceutical specialties [8]. Moreover, in the chemometric treat-
ment of complex data sets, it is usually preferable to reduce the
data in order to select those that carry useful analytical informa-
tion and at the same time minimize those that carry redundant or
useless information. In many cases, the choice of the most useful
data influences the predictive ability of the multivariate models
and this procedure can be very useful in the determination of the
components at very low concentration that are often hidden by
the more concentrated components [8].

In the first step of a multivariate regression method, principal
component analysis (PCA) identifies orthogonal directions of
maximum variance of the original data, and places the data in a
space of lower dimensionality made from the components that
have the highest variance. PCA combines the original variables into
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a smaller number of orthogonal variables called principal com-
ponents (PCs). The first PCs are considered in the modeling be-
cause of containing the most useful information, whereas the last
ones can be discarded [20–23].

The principal component regression (PCR), partial least square 1
(PLS1), partial lest squares 2 (PLS2) and multivariate component
analysis (MCR) models were applied to two pharmaceutical formula-
tions, the first one containing three active pharmaceutical ingredients
(APIs) and the other four APIs, which are very difficult to be analyzed
by means of conventional spectrophotometric methods for the pre-
sence of some components in quantities much lower than the others.
The increase in the predictive power of the models was studied by
varying the instrumental parameter “data interval” between 0.5 and
2 nm in the recording of the spectra used in calibration.

The ternary formulation consisted of paracetamol (PAR), so-
dium ascorbate (ASC) and chlorpheniramine maleate (CHL), with a
ratio of 150:140:1 (m/m/m). The quaternary mixture contained
paracetamol (PAR), caffeine (CAF), phenylephrine hydrochloride
(PHE) and chlorpheniramine maleate (CHL) with a ratio of
125:6.25:1.25:1 (m/m/m/m). Both mixtures are commonly used as
analgesics and antipyretic specialties.

The analytical performance of the applied algorithms was tes-
ted on the data matrices from synthetic mixtures and commercial
pharmaceutical preparations.

2. Materials and methods

2.1. Chemicals

The active pharmaceutical ingredients ASC (98%), CAF (99%),
CHL (99%), PAR (100%), and PHE (98%) were purchased from Sig-
ma-Aldrich (Milan, Italy) and used as received. The pharmaceutical
specialties Dequa-Flu

s

(Aspen Pharmacare SpA) and Zerinolflu
s

(Boehringer Ingelheim SpA) were obtained commercially. Pure
water and ethanol were of instrumental purity grade (J. T. Baker,
Holland). All other reagents were of the highest purity commer-
cially available.

2.2. Instruments

Absorption spectra were recorded on a Perkin-Elmer Lambda
40P spectrophotometer under the following conditions: quartz cell
10 mm; wavelength range 200–350 nm; scan rate 1 nm/s; time
response 1 s; spectral band 1 nm; data density 0.5, 1.0 and
2.0 point/nm. Spectral acquisition and elaboration were performed
by the software package UV Winlab 2.79.01 (Perkin-Elmer). Ap-
plication of PCR and PLS algorithms was supported by the software
package ‘The Unscrambler X 10.3’ (Camo Process As., Oslo, Nor-
way). MCR-ALS routines were performed under Matlab computer
environment and implemented as MATLAB functions. They were
used as described in previous works [24,25]. Source files con-
taining these algorithms are available on the website “www.
mcrals.info”.

2.3. Standard solutions

Stock solutions of the single compounds were prepared in
ethanol by dissolving nearly 20.0 mg of each drug in 100 mL ca-
librated flasks. A calibration set of 18 ternary mixtures was pre-
pared with PAR concentration in the range of 5.05–30.3 mg/L, ASC
in the range of 2.04–30.60 mg/L and CHL in the range of 0.20–
5.05 mg/L. A second calibration set of 38 quaternary solutions was
prepared with the drugs in the following concentration ranges:
PAR 5.10–30.60 mg/L, CAF 0.50–5.00 mg/L, CHL 0.20–2.01 mg/L,
and PHE 0.21–2.10 mg/L.

The calibration mixtures were prepared by adopting an SLD
distributed on five concentration levels. Two further independent
validation sets, comprising 15 ternary mixtures and 15 quaternary
mixtures, respectively, were then prepared to validate the cali-
bration models. Statistical analysis was performed on data from
analysis of three replicates for sample.

2.4. Pharmaceutical samples

Five tablets for each pharmaceutical specialty were reduced to
fine powder and suspended in 100 mL of ethanol. The suspension
was sonicated for 10 min and then filtered through a 45 μm
membrane filter. Samples for analysis were obtained after proper
dilution with ethanol.

3. Chemometric elaboration

PCR and PLS are known as factor analysis methods. In the first
step of calibration, concentrations and analytical signals from re-
ference samples are used to build a mathematical model. In the
following prediction step, this model is used to evaluate the con-
centration of an unknown sample.

PCR considers all spectral data simultaneously (X variables) and
correlates the concentration components (Y variables) with these
data in the second phase of multiple regression. On the other
hand, PLS modeling processes information from both spectral and
concentration data (X and Y) and projects information in the new
space of principal components.

In applying multivariate calibration to spectrophotometry, X
variables or descriptors are represented by the absorptivity values
of the samples at various wavelength values, whereas the Y vari-
ables or responses consisted of concentration values. In building
multivariate models, PCs have to reach the optimal number be-
cause the prediction error decreases with them until they reach an
optimal value. The most known validation procedure is full-cross
validation, in which one reference is removed from the calibration
set at a time and the same sample is predicted by using the cali-
bration built with the remaining references. The number of PCs
was chosen by adopting the root mean square error of cross vali-
dation (RMSECV), which estimates the error when unknown
samples are predicted with the calibration model. The best pre-
diction ability of the models corresponds to the lowest RMSECV.
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where ĉ is the predicted value for the references; ci is the real
value for the references; and n is the number of references.

External validation was performed by adopting the parameter
mean square error of prediction (RMSEP) and relative error (RE) in
prediction:
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MCR–ALS provides the decomposition of the experimental data
matrix describing the chemical system into the contributions of
the single species as a bilinear relation between the concentra-
tions and the pure spectra, following the generalized law of
Lambert–Beer in multi-sample and multivariable version [11,12].
In matrix form, the bilinear model is expressed in the following
way:

D CS E 3T= + ( )
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