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a b s t r a c t

The magnetoelastic behavior of heterogeneous thick-walled cylinder with cellular material layers and
enduring a dynamic and spatially varying eigenstrain is studied in this paper. The electrically conducting
cylinders under plane strain or plane stress condition are subjected to a constant magnetic field. An
efficient methodology is developed for the time-harmonic and transient response of multilayered
cylinders. The developed methodology is then employed to model the functionally graded cellular
cylinders with an arbitrary profile of the relative density distribution via the piecewise homogeneous
layer technique. The results are first verified with those available in literature. Then, the effect of relative
density, non-homogeneity index, and geometric configuration is examined on the dynamic magnetoelastic
response of cylinders containing cellular material layers.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilayered and laminated composite have received increasing
attention in aerospace, automobile, transportation, piping, and bio-
medical industries [1,2]. The conventional laminated composites
are prone to delamination, deboning, and crack initiation due to
the mismatch of material properties of bonded layers [3]. These
are the reason for which functionally graded materials (FGMs) with
continuous variation of material properties have been introduced
[4]. This gradual variation in material properties reduces the
likelihood of fracture caused by the stress concentration, in-plane
and out-of-plane thermal stresses, and high stress intensity factors
in composite laminates [5,6]. As a result, extensive research has
been devoted to the multiscale modeling of multilayered and
FGM structures.

The microscopic and macroscopic modeling of composite
laminates has been the research topic in several studies [7,8]. For
instance, a failure analysis was conducted by Hakki Akcay and Kay-
nak [9] for multilayered cylinders subjected to thermomechanical
loading. Tsukrov and Drach [10] provided explicit expressions for

displacement and stress fields in a multilayered cylinder with
orthotropic layers. Kuo [11] also examined the behavior of smart
circular fibrous composites with imperfect interfaces.

Furthermore, the structural behaviors of functionally graded
(FG) structures have drawn the attention of researchers in the last
two decades [12,13]. For example, the elastic analysis of a thick FG
cylinder with the exponential material profile was conducted by
Chen and Lin [14]. Akbarzadeh et al. [15–17] employed the hybrid
Laplace–Fourier transform to study the transient thermomechani-
cal behavior of FG plates and doubly-curved panels.

In micromechanics, an eigenstrain could simulate several mul-
tiphysics phenomena, such as a plastic deformation, hygrothermal
strain, and misfit strain. The self-equilibrated stress caused by the
eigenstrain is called eigenstress [18,19]. The eigenstrain and
inclusion analyses have been used by many scientists in order to
elucidate the behavior of multiphase and heterogeneous composites
[20,21]. Two methodologies using the eigenstrain model were
presented by DeWald and Hill [22] and Achintha et al. [23] to
predict the residual stresses within the multi-dimensional media.
Bromley et al. [24] also introduced a model via eigenstrain analysis
to approximate the residual stresses caused by the thermally
induced plasticity. In addition, electrically conducting composites,
working in the presence of magnetic field, experience the Lorentz
force based on the magnetoelasticity theory [25,26]. Since the
external magnetic field changes the multiphysics behavior of smart
composites, micromechanical approach as well as multiphysics
have been employed in references [27–29] to obtain the constitutive
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models for magnetoelastic composites. Some closed-form solutions
were also achieved in references [30,31] for dynamic analysis of
magnetoelastic media.

While most eigenstrain and magnetoelastic analyses deal with
solid materials, there exist only a few contributions on the eigen-
strain problems in media composed of cellular materials. Cellular
materials with distinctive multiphysics and multifunctional prop-
erties offer a robust low-mass solution for applications that require
light-weight and stiff structural components [32]. Lattice materials
are periodic cellular structures whose material properties are
controlled by cell geometry, nodal connectivity, and relative
density [33,34]. Due to the controllability of material properties
of cellular structures, they have found many applications in
aerospace, biomedical, and architecture industries. The effective
electromagnetic properties of lattices were found in references
[35,36] using the numerical and experimental investigations. The
plane wave propagation in infinite two-dimensional periodic lattices
was also studied theoretically by Phani et al. [37]. Pasini et al. [38–40]
conducted the multiscale modeling of heterogeneous, hierarchical,
and multi-dimensional lattices using the homogenization techniques.

Due to the application of sandwich structures, composed of
cellular layers, under prescribed multiphysics loadings, this paper
examines the magnetoelastic behavior of multilayered and
functionally graded cellular cylinders subjected to a dynamic
eigenstrain. The dynamic eigenstrain could be interpreted as a
sudden thermal expansion in the internal layer of a bi-layered tube
due to a sudden or periodic temperature rise. This phenomenon
can occur in the multilayered tubes containing hot water or wheels
at braking. A methodology is developed for the eigenstrain analysis
in multilayered cylinders with perfectly bonded interfaces which is
employed for studying the eigenstrain behavior of functionally
graded structures. Using the multiscale modeling, the homoge-
nized material properties of cellular materials with square cell
topology are used to study the dynamic responses of heterogenous
cylindrical tubes/disks composed of cellular materials under the
dynamic eigenstrain. Eventually, maps are given to clarify the
influence of relative density, non-homogeneity index, and geomet-
rical configuration on the magnetoelastic responses.

2. Problem definition and governing equations

An electrically conducting, multilayered, cylindrical tube (plane
strain) or disk (plane stress) working in the presence of external
magnetic field, Hz, endures a dynamic eigenstrain in arbitrary lay-
ers. As illustrated in Fig. 1, R0 is the inner radius of the first layer,
while the outer radius of the kth layer (k = 1,2, . . . ,N) is represented
by Rk; the number of layers is also represented by N.

Suppose the kth layer of the cylindrical tube/disk undergoes a
dynamic eigenstrain with a cubic polynomial radial distribution
[30]:

e�ðKÞmn ¼ dmnE�ðkÞðrÞuðtÞ ð1Þ

where the superscript k denotes the kth layer of the cylindrical
tube/disk; dmn(m, n = r, h, z for cylindrical coordinate), r, and t are,
respectively, Kronecker delta function, radial coordinate, and time.
The cubic polynomial radial distribution of eigenstrain with arbi-
trary coefficients AðKÞl ðl ¼ 0;1;2;3Þ is E�ðKÞðrÞ ¼ AðKÞ0 þ AðKÞ1 r þ AðKÞ2 r2þ
AðKÞ3 r3; u also stands for the time dependence function of the
eigenstrain.

The elastic strain eðKÞmn relates eigenstrain e�ðKÞmn and total strain eðKÞmn

as [18]:

eðKÞmn ¼ eðKÞmn þ e�ðKÞmn ð2Þ

The strain components as a function of radial displacement u(K), for
the considered axisymmetric problem, are [41]:

eðkÞrr ¼ uðkÞ;r ; eðkÞhh ¼
uðkÞ

r
ð3Þ

where the subscript comma represents the differentiation with
respect to the radial coordinate. The constitutive equation also
reads:

rðkÞmn ¼ 2G0ðkÞ eðkÞmn þ
mðkÞ

1� 2mðkÞ
eðkÞdmn

� �
ð4Þ

where rmn, m, and e = emm represent stress components, Poisson’s
ratio, and volumetric strain based on the Einstein summation con-
vention; G0 ¼ E

2ð1þmÞ, and E denotes Young’s modulus. Although G0 is
the same as shear modulus G for isotropic materials (G0 ¼ G);
G0 – G for cellular materials with cubic symmetry. Substituting
Eqs. (1)–(3) into Eq. (4) yields the following stress fields for plane
strain and plane stress conditions [42,43]:

rðKÞrr ¼

2G0ðKÞ

1�2mðKÞ ð1� mðKÞÞuðKÞ;r þ mðKÞ uðKÞ
r � ð1þ mðKÞÞE�ðKÞðrÞuðtÞ

h i
;

plane strain
2G0ðKÞ

1�mðKÞ uðKÞ;r þ mðKÞ uðKÞ
r � ð1þ mðKÞÞE�ðKÞðrÞuðtÞ

h i
;

plane stress

8>>>>><
>>>>>:

ð5aÞ

rðKÞhh ¼

2G0ðKÞ

1�2mðKÞ mðKÞuðKÞ;r þ ð1� mðKÞÞ uðKÞ
r � ð1þ mðKÞÞE�ðKÞðrÞuðtÞ

h i
;

plane strain
2G0ðKÞ

1�mðKÞ mðKÞuðKÞ;r þ uðKÞ
r � ð1þ mðKÞÞE�ðKÞðrÞuðtÞ

h i
;

plane stress

8>>>>><
>>>>>:

ð5bÞ

rðKÞzz ¼
2G0ðKÞmðKÞ
1�2mðKÞ uðKÞ;r þ uðKÞ

r � 1þmðKÞ
mðKÞ E�ðKÞðrÞuðtÞ

h i
; plane strain

0; plane stress

(

ð5cÞ

The equation of motion for an electrically conducting cylinder
in the presence of magnetic field is [26]:

rðKÞrr;r þ
rðKÞrr � rðKÞhh

r
þ f ðKÞz ¼ qðKÞ€uðKÞ ð6Þ

Fig. 1. A multilayered cylindrical tube/disk in a magnetic field.
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