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a b s t r a c t

Damage localization in laminated composite structures is a very active area of research due to the role
that these kind of structures play in the transport industries. The mode shape derivatives, like rotations
(first derivative), curvatures (second derivative) and, more recently, third and four derivatives, have been
used to localize damage in composite plates. The most used method to compute these derivatives is the
application of finite differences. However, finite differences present several well-known problems, such
as the error propagation and amplification. The magnitude of the error associated with the computed
derivative is not easy to estimate, mainly because the numerical error associated with finite differences
depends on the values of derivatives of higher order than the order of the derivative that one wants to
compute. A new technique based on the Ritz method to estimate this error is proposed in this paper.
The optimal spatial sampling for the numerical differentiation of the mode shapes are defined based
on the minimization of the total error. The good performance of the optimal sampling is shown by
applying it to the damage localization in a laminated composite plate.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The use of composite materials, namely carbon fiber reinforced
polymers, in aeronautical and aerospace structures is increasing
due to the opportunities they present for weight reduction. In addi-
tion to their high specific stiffness and strength, other advantages
include their superior fatigue performance. In spite of these advan-
tages, composite materials are more sensitive to certain type of
damages and present different kinds of defects or damage mecha-
nisms from those of metals [1]. One of the most common damages
is delamination, which usually cannot be detected by visual means.
Therefore, non-destructive testing (NDT) techniques are of critical
importance for structural integrity evaluation and failure preven-
tion of engineering components made of composite materials.
There are many NDT techniques to monitor damage, including
X-ray, acoustic emission and ultrasonic methods. However, in most
cases they operate locally and/or require special sample prepara-
tion and the removing of the inspection parts, leading to time con-
suming and increasing the maintenance costs. An alternative to the
use of this kind of techniques are methods based on vibration char-
acteristics, which can be associated with a broader structural

health monitoring (SHM) technique. These methods allow global
inspection and usually do not require special sample preparation
and the removing of the parts to inspect. Several of these methods
have been reviewed and surveyed over the years (see e.g. [2–7]).
The reviews by Montalvao et al. [6] and Zou et al. [7] are of partic-
ular relevance since they reference vibration based methods ap-
plied to composite structures.

Among these methods, the differences of mode shape curva-
tures of undamaged and damaged structures was initially pro-
posed by Pandey et al. and applied to beams [8]. More recently,
this method has been applied to damage localization on composite
plates [9,10]. According to Abdo and Hori [11], the differences in
the rotation of mode shapes, i.e. the first derivative of modal dis-
placement fields, can also be used to localize damage, namely in
beams and plates. Besides the use of differences in first and second
order derivatives of the modal displacement fields, one can also
use differences in higher order derivatives to localize damage, like
third and fourth order derivatives, namely in beams [12–15] and
plates [16,17]. The derivatives are usually computed by applying
finite differences. For instance, the mode shape curvatures can be
computed by applying the second order central finite difference
formula to the modal displacement fields. However, due to the
approximative nature of finite differences, they lead to propagation
and amplification of the measurement errors and noise which are
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always present in experimental data. In order to minimize this
problem, one needs to select an optimal spatial sampling, since
mode shapes undersampling and oversampling can have adverse
effects on the quality of the damage localization [18]. Unfortu-
nately, the magnitude of the error in the computation of the deriv-
ative is not easy to estimate, mainly because the numerical error
associated with finite differences depends on the values of deriva-
tives of higher order than the order of the derivative that one
wants to compute.

A new technique based on the Ritz method to estimate the er-
ror in the computation of mode shape derivatives is proposed in
this paper. Once the total error is estimated, the optimal spatial
sampling used in the finite differences formulas to minimize
the influence of the error can be defined. First, second, third
and fourth order derivatives are computed using finite differences
with a quadratic convergence of the spatial sampling, in order to
localize damage in a laminated composite plate. It is observed
that the optimal spatial sampling depends on the mode shape
used and the accuracy of the measured data. It also depends on
the order of the derivative and the kind of finite difference,
namely the number of points used and the relation between the
point where the derivative is computed and neighboring points.
It is also shown in this paper that by using a spatial sampling
close to the optimal value, one is able to obtain good damage
localizations.

2. Method

2.1. Ritz method for orthotropic laminated composite plates

Considering the Kirchhoff assumptions [19], the maximum
strain energy of a rectangular orthotropic plate with an in-plane
area A is defined by [17]:
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where Dij ¼
R h=2
�h=2 Q ðkÞij z2dz are the laminate stiffnesses, being Q ðkÞij the

plane stress reduced stiffnesses of the kth lamina and h the thick-

ness of the plate [19].
The maximum kinetic energy is given by [17]:
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where x is the angular frequency and q is the material density.
The Ritz method relies on the minimization of the functional

Tmax � Umax with respect to the parameters Wkl [20,21]:

@ðTmax � UmaxÞ
@Wkl

¼ 0 with k ¼ 1; . . . ;M and l ¼ 1; . . . ;N ð3Þ

These parameters are the coefficients of a series defining the max-
imum amplitudes w(x,y):
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where Xm(x) and Yn(y) are functions that verify the geometric
boundary conditions, being M and N the number of terms in the
series.

By replacing Eq. (4) in Eqs. (1) and (2) and applying Eq. (3)
yields:
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This equation defines an eigenvalue problem of size M � N. In this
work, a plate with all four edges clamped is studied and, therefore,
are only considered functions that respect these boundary condi-
tions. The functions proposed by Gartner and Olgac [22] where cho-
sen for this study, since they present a greater numerical stability
than the usual characteristic functions:
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where a and b are the length and the width of the plate, respec-
tively. The parameters Ar, Br, Cr and Dr, for r = m or n are given by:

Ar ¼ 1; Br ¼ �
1þ ð�1Þre�cr

1� ð�1Þre�cr
; Cr ¼ �
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;
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and the parameters cr are the solutions of the non-linear equation:

cosðcrÞ �
2e�cr

1þ e�2cr
¼ 0 ð9Þ

Since the integrands in Eq. (5) are analytical functions, the integrals
can be computed analytically, thus avoiding a discretization of the
plate.

2.2. Damage model and localization method

In order to simulate the damage, a reference finite element
model of the plate is created and its natural frequencies and mode
shapes are computed. The damage considered in this work is de-
fined by a reduction of the laminated stiffness [D] of an element
e, such that its Frobenius norm becomes:

½eDðeÞ���� ���
2
¼ 1� dðeÞ
� �
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��� ���

2
with 0 6 dðeÞ 6 1 ð10Þ

The severity of damage in the specified element is related with the
parameter d(e) in the above equation. There is no reduction of the
stiffness if this parameter is equal to zero, whereas if this parameter
takes the value of one, there will be a complete reduction of the
stiffness. The software FEAP was used to model the plate, using
the SHEL1 finite element [23].

The damage localization indicators used in this work are the dif-
ferences of modal displacement fields derivatives of damaged
mode ewq and undamaged mode wq. For the case of derivatives in
the x direction these indicators can be written as [17]:

DFDðpÞq ðx; yÞ ¼
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� @
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where p denotes the order of the spatial derivative and q the mode
shape number.

The differentiation of the modal displacement fields of the
undamaged plate @pwq(x,y)/@xp can be computed analytically, since
it is defined by a series expansion (see Eq. (4)):
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