Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

Sesquiterpenoids from the seeds of *Sarcandra glabra* and the potential anti-inflammatory effects

Saimijiang Yaermaimaiti ^{a,1}, Peng Wang ^{a,b,1}, Jun Luo ^a, Rui-Jun Li ^a, Ling-Yi Kong ^{a,*}

^a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China ^b School of Pharmacy, Yancheng Teachers University, Xiwang Road, Yancheng 224051, People's Republic of China

ARTICLE INFO

Article history: Received 6 February 2016 Received in revised form 29 March 2016 Accepted 30 March 2016 Available online 2 April 2016

Keywords: Sarcandra glabra Sesquiterpenoids Linderanes Eudesmanes Nitric oxide

ABSTRACT

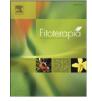
Five new sesquiterpenoids, including two linderanes (1–2) and three eudesmanes (3–5) were isolated from the seeds of *Sarcandra glabra*. Their structures and relative configurations were established by spectroscopic data analysis. **1** was a rare linderane derivative having an 18-membered triester ring which is a common characteristic in linderane dimers. Compounds 1–5 were investigated for their inhibitory effects on NO production in LPS-induced macrophages and **1** showed moderate bioactivity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The whole plant of Sarcandra glabra (Thunb.) Nakai (Chloranthaceae) has been used as a Traditional Chinese Medicine (TCM) for the treatment of inflammation and traumatic injuries in China for thousands of years [1]. Modern pharmacological research has also confirmed the traditional applications and curative effects of S. glabra recorded in the ancient books on TCMs [2]. However, there are only a few chemical investigations on the bioactive compounds responsible for the pharmacological effects in S. glabra. Sesquiterpenoids, linderanes and eudesmanes mostly, are reported to be the most important metabolites in *S. glabra* [2–3]. Particularly, linderane dimers isolated from S. glabra and other plants of the Chloranthaceae family, have attracted a lot more attention of medicinal chemists due to their complex structures and significant bioactivities [4–7]. For instance, some linderane dimers with novel structures and anti-inflammatory activities were isolated from S. glabra in our previous research [8]. In the subsequent investigation of sesquiterpenoids in S. glabra, five new sesquiterpenoid monomers, including two linderanes (1-2) and three eudesmanes (3-5) were isolated from the seeds of S. glabra. Compound 1, named as sarglabolide L, was a rare linderane derivative having an 18-membered triester ring

E-mail address: cpu_lykong@126.com (L.-Y. Kong).


which is common in linderane dimers [2–3], and also exhibited moderate inhibitory effect on NO production in LPS-induced macrophages. Herein, we report the isolation, structural elucidation and bioassay of the new compounds.

2. Experimental

2.1. General

Optical rotations were measured on a IASCO P-1020 polarimeter. HRESIMS experiments were performed using an Agilent UPLC-Q-TOF-MS (6520B) spectrometer. UV and IR spectra were recorded on a Shimadzu UV-2450 spectrometer and a Bruker Tensor 27 spectrometer, respectively. NMR spectra were recorded in CDCl₃ or CD₃OD on a Bruker AV-500 NMR instrument at 500 MHz (¹H) and 125 MHz (¹³C). Silica gel (Qingdao Marine Chemical Co., Ltd., China), ODS (FuJi, Japan), MCI gel (Mitsubishi Chemical, Japan), and Sephadex LH-20 (Pharmacia, Sweden) were employed for separation by column chromatography. MPLC was carried out on a Quiksep system (H&E Co., Ltd., China). Preparative HPLC was performed on a Shimadzu LC-6A instrument with a SPD-10A detector and a shim-pack RP-C18 column (20×200 mm, 10 µm). Analytical HPLC was performed on an Agilent 1200 series instrument using a DAD detector and a shim-pack VP-ODS column $(150 \times 4.6 \text{ mm}, 5 \text{ }\mu\text{m})$. Authentic L- and D-malic acid samples were purchased from J&K Chemical Ltd., (China). All solvents and reagents were of analytical grade.

CrossMark

^{*} Corresponding author.

¹ These authors contributed equally.

Table 1

¹H (500 MHz) and ¹³C NMR (125 MHz) data of compounds 1–3.

	1a		2b		3a	
	$\delta_{\rm H}$ (J in Hz)	δ _C	$\delta_{\rm H}$ (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)	δ_{C}
1	1.74, m	27.9	1.35, td (7.7, 3.4)	28.6	3.82, dd (12.4, 5.7)	73.5
2α	0.85, ddd (9.1, 8.5, 6.0)	12.4	0.81, m	16.8	2.71, dd (17.1, 5.7)	42.6
2β	1.46, m		0.96, m		2.64, dd (17.1, 12.4)	
3	1.51, m	28.4	1.93, m	24.1		197.7
4		78.6		152.0		128.7
5	2.40, dd (13.7, 3.4)	64.2	2.48, m	66.8		154.6
6	2.63, ddd (17.2, 13.7, 1.6)	22.1	2.45, m	25.3	6.70, br. d (1.6)	116.3
	2.96, dd (17.2, 3.4)		2.67, d (13.1)			
7		154.5		163.9		156.3
8		148.8		107.6	2.35, m	22.3
9	6.37, s	124.5	1.87, d (13.1)	49.6	2.17, m	32.7
	,		2.67, d (13.1)		. ,	
10		43.3		39.1		38.5
11		120.1		124.0		73.5
12		169.0		173.7	1.42, s	29.3
13	5.02, br.d (13.3)	56.4	1.83, s	8.2	1.42, s	29.1
15	4.73, d (13.3)				,-	
14	1.19, s	22.8	0.93, s	17.9	1.04, s	15.1
15	4.14, d (11.8)	72.3	4.80, s	106.2	1.85, s	10.5
15	4.71, d (11.8)	7213	4.97, s	10012	100,0	1012
1'		166.9	4.04, d (7.8)	97.6		
2'		130.5	3.28, br.d (8.9)	78.2		
3'	6.66, td (5.8, 1.1)	135.1	3.23, m	74.4		
4'	4.60, dd (15.0, 5.7)	62.2	3.21, m	71.6		
7	5.31, dd (15.0, 5.5)	02.2	5.21, 111	71.0		
5'	1.92, d (1.1)	13.2	2.97, ddd (9.5, 6.0, 2.2)	78.4		
6'	1.52, ((1.1)	13.2	3.55, dd (11.9, 6.0)	62.6		
0			3.75, dd (11.9, 2.2)	02.0		
1"		173.1	5.75, uu (11.5, 2.2)			
2"	4.48, dd (5.8, 3.4)	67.2				
3"	2.86, dd (16.7, 5.8)	38.3				
	3.02, dd (16.7, 3.4)	.00				
4"	5.02, du (10.7, 5.4)	170.5				

^a Recorded in CDCl₃.

^b Recorded in CD₃OD.

2.2. Plant material

The fresh seeds of *S. glabra* were collected in Ganzhou, Jiangxi province, PR China in November 2013. The plant material was authenticated by Prof. Mian Zhang, Department of Medicinal Plants, China Pharmaceutical University. A voucher specimen, (No. CSH201311) was deposited in the Department of Natural Medicinal Chemistry, China Pharmaceutical University.

2.3. Extraction and isolation

The fresh seeds of *S. glabra* (10 kg) were air dried and roughly ground. The ground seeds were then extracted with 95% EtOH (3 L) under reflux $(4 \times 2 h)$ and the solvent was removed under reduced pressure to afford a brown and odorous crude extract (460 g). This extract was suspended in 2.0 L water and successively extracted with petroleum ether (4 × 2 L) and ethyl acetate (3 × 2 L).

The ethyl acetate extract (70 g) was subjected to a silica gel column and eluted with $CH_2Cl_2/MeOH$ (50:1, 25:1, 10:1, 0:1, v/v), affording four fractions (Fr. 1–4). Fr. 2 (27 g) was further applied to a silica gel column eluted with a continuous gradient of petroleum ether/acetone (3:1 to 1:1, v/v) to afford 30 subfractions (Fr. 2.1–30). Frs. 2.1–15 were combined and chromatographed on an MCI gel column eluted with 60%, 80% and 100% methanol. The 60% methanol eluate was further separated on a reversed-phase MPLC and Sephadex LH-20 gel columns, and purified by preparative HPLC to obtain **1** (2.1 mg) and **5** (3.0 mg). Frs. 2.19–26 were combined and subjected to an MCI gel column eluted with 60%, 80% and 100% methanol. The 60% methanol eluate was further applied to a Sephadex LH-20 gel column, and purified by preparative HPLC to afford **3** (15.2 mg) and **4** (6.6 mg). Fr. 3 (12 g) was also subjected to an MCI gel column and eluted with 40%, 60%, 80% and 100% methanol to afford fractions Fr. 3.1–4. Fr. 3.2 was further chromatographed on an ODS column and purified by preparative HPLC to afford **2** (10.5 mg).

Table 2

 $^{1}\mathrm{H}$ (500 MHz) and $^{13}\mathrm{C}$ NMR (125 MHz) data of compounds **4–5** in CDCl_3.

	4		5	
	$\delta_{\rm H}$ (J in Hz)	δ_{C}	$\delta_{\rm H}$ (J in Hz)	δ_{C}
1	1.14, m	40.7	1.26, t (11.9)	49.5
	1.57, m		1.87, br. d (13.3)	
2	1.53, m	17.0	3.92, m	67.0
	1.89, dt (13.5, 3.5)			
3	1.33, m	36.2	1.99, t (11.8)	46.0
	1.75, m		2.72, dd (12.4, 4.9)	
4		73.2		145.4
5	1.21, m	49.3	1.93, dd (12.8, 3.7)	49.9
6	2.38, t (14.0)	23.4	2.84, dd (13.9, 12.8)	25.4
	2.86, dd (14.5, 3.5)		2.77, dd (13.9, 3.7)	
7		163.2		161.9
8	4.86, dd (11.5, 6.3)	78.2	4.84, dd (10.8, 6.8)	77.7
9	1.00, t (11.8)	49.9	1.16, t (11.8)	47.1
	2.14, dd (12.0, 6.3)		2.35, dd (12.2, 6.3)	
10		35.2		36.8
11		120.4		120.9
12		175.1		174.7
13	1.80, s	8.4	1.83, s	8.4
14	1.22, s	19.2	0.92, s	17.6
15	3.43, d (10.4)	70.0	4.72, s	109.7
	3.60, d (10.4)		4.99, s	

Download English Version:

https://daneshyari.com/en/article/2538114

Download Persian Version:

https://daneshyari.com/article/2538114

Daneshyari.com