
Technical Communication

Ultimate bearing capacity of a strip footing placed on sand with a rigid
basement

Feng Yang, Xiang-Cou Zheng, Lian-Heng Zhao ⇑, Yi-Gao Tan
School of Civil Engineering, Central South University, Changsha, Hunan Province, People’s Republic of China

a r t i c l e i n f o

Article history:
Received 10 December 2015
Received in revised form 6 April 2016
Accepted 11 April 2016
Available online 28 April 2016

Keywords:
Shallow strip footing
Finite element upper-bound method
Rigid translatory moving elements
Ultimate bearing capacity
Failure mechanism
Rigid basement

a b s t r a c t

The bearing capacity factor (Nc), correction factor (Kc), and failure mechanism of a strip footing with a
rigid basement were investigated using UBFEM-RTME. The footing–sand interface and the sand-
basement interface were assumed perfectly rough. The results are presented in terms of the variations
of Nc and Kc with the friction angle, /, and dimensionless thickness, h/b, of the sand. When h/b is smaller
than dimensionless critical depth Hcr/b, Nc and Kc increase with decreasing h/b or increasing / and the
mesh-like failure mechanism is found to confine within a small domain.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The ultimate bearing capacity of shallow strip footings is a
classic issue that plays a considerably vital role in geotechnical
and civil engineering. Previous investigations on this problem
mainly focused on footings on purely cohesive soil and frictional
soil [1–8]. However, strip footings are usually not placed on a
semi-infinite solid bed but are more commonly confined either
horizontally or vertically. Note that this issue has received
considerable attention, especially in the case of horizontal confine-
ment [9–11]. Their investigations demonstrated that horizontal
confinement has a significant effect on the bearing capacity of strip
footings.

At an engineering site, however, strip footings are often placed
on a sand layer with a hard stratum basement such as stiff rock.
Even though failures of strip footing may occur at a rock mass
[12], these kinds of basement are seen as perfectly rigid in present
analysis, and their failures are assumed to be confined and occur
only at the sand layer. With the constraints imposed by the rigid
basement, the failure mechanisms for strip footings become much
more complex and ultimate bearing capacities are difficult to
determine. Little information has been reported on this issue. The
available reports were presented by Salencon [9] and Mandel and

Salencon [13]. Thus, it is necessary to further determine the ulti-
mate bearing capacities and associated failure mechanisms.

In this study, the ultimate bearing capacity of shallow strip
footings placed on purely frictional sand with a rigid basement
was investigated using the upper-bound finite element method
with rigid translatory moving elements (UBFEM-RTME) that
introduced by Yang et al. [14]. The footing–sand interface and
the sand-basement were assumed to be perfectly rough. The
upper-bound solutions for the bearing capacity factor Nc and the
correction factor Kc for a series of friction angles (/) and dimen-
sionless thicknesses (h/b) of the sand layer were determined using
nonlinear programming, and the associated failure mechanisms
were simultaneously obtained. These upper-bound solutions were
compared with results available in literature.

2. Problem definitions

The theoretical models for a rough strip footing with a rigid
basement placed on a sand layer and the associated major failure
surfaces are presented in Fig. 1. The half and whole width of the
footing are separately denoted by parameters b and B. The
footing–sand interface is assumed perfectly rough, and the thick-
ness of the sand layer is h. The rigid basement surface is assumed
horizontal, and its contact with the sand is also assumed perfectly
rough. The width of the failure mechanisms on the ground surface
is defined by w.
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When the ultimate loading, qu, is applied on a rigid strip footing
without a rigid basement, the footing moves downward vertically,
and the scope of its failure mechanism spreads downward to a crit-
ical depth, Hcr, which depends on the friction angle, /, of the sand.
Under the assumption that the sand obeys the associated flow rule,
the bearing capacity factor N0

cð/Þ for a strip footing without a rigid
basement can be given as:

N0
cð/Þ ¼

2qu

cB
; ð1Þ

where c is the unit weight of sand.
If the rigid basement is located at a dimensionless distance of h/

b < Hcr/b, the scope of the failure mechanisms and the ultimate
bearing capacity of the footing are moderately affected. Given this
effect on the capacity of the strip footing,

Ncð/Þ ¼ Kcðh=b;/ÞN0
cð/Þ; ð2Þ

where Ncð/Þ is the bearing capacity factor for a strip footing with a
rigid basement, and Kcðh=b;/Þ is the correction factor that depends
on value / and parameter h/b.

To facilitate analysis, only the right half of the problem domain
with initial mesh divisions was considered (presented in Fig. 1(b)).
A Cartesian coordinate system with its origin located at point G1

was employed. This domain was artificially discretized into a num-
ber of three-node rigid triangular elements. The mesh divisions for
the footings with rigid basements are identical to those without
rigid basements. For the latter, however, the nodal coordinates
above the sand-basement interface were confined by geometric
constraints. To obtain a better upper-bound solution and an
optimized failure mechanism, the mesh was optimized through a
series of amendments in the calculation process. To summarize
the mesh optimization results, the domain depth (l1) and length
(l2) were set equal to 4b and 10b, respectively. The total numbers
of elements, nodes, and velocity discontinuities defined by the
parameters ne, nn, and nd, respectively, were also included in this
figure.

3. Models for Nc by UBFEM-RTME

Recently, based on the upper-bound kinematical theorem of
limit analysis, Yang et al. [14] introduced the UBFEM-RTME. By
directly setting the coordinates of the elements’ nodes and the
velocities of the elements as unknowns to be determined and
applying geometric constraints to guarantee the forms of the
meshes and elements, the optimal locations for velocity disconti-
nuities were obtained through automatic searches using nonlinear
programming.

According to the upper-bound theorem, the present upper-
bound solutions are always greater than the theoretical solutions.
An upper-bound solution of the bearing load on a rigid strip footing
can be obtained by equating the power done by the bearing load to
the power done by the soil weight. The ultimate bearing capacity
(qu min), using the UBFEM-RTME based on nonlinear programming,
is defined as

qumin ¼
Xne
i¼1

Pe;i=b; ð3Þ

where Pe;i is the power done by gravity for element i ¼ �Ai � c � v i

and ne is the total number of elements. Ai is the area of the ith
element, v i is the vertical velocity of the ith element along the
upward direction.

The constraints are written as

�n0i � n00i 6 0; n0i � n00i 6 0ði¼ 1; :::;ndÞ ðaÞ
�Ai 6 0 ði¼ 1; :::;neÞ ðbÞ
ui ¼ 0; v i ¼�1; 06 xj 6 b; yj ¼ 0 ði¼ 1; . . . ;nv1; j¼ 1; . . . ;ng1Þ ðcÞ
ui ¼ 0; xj ¼ 0; �4b6 yj 6 0 ði¼ 1; . . . ;nv2; j¼ 1; . . . ;ng2Þ ðdÞ
ui ¼ 0; v i ¼ 0; 06 xj 6 10b; yj ¼�4b ði¼ 1; . . . ;nv3; j¼ 1; . . . ;ng3Þ ðeÞ
ui ¼ 0; v i ¼ 0; xj ¼ 10b; �4b6 yj 6 0 ði¼ 1; . . . ;nv4; j¼ 1; . . . ;ng4Þ ðfÞ
b6 xj 6 10b; yj ¼ 0 ðj¼ 1; . . . ;ng5Þ ðgÞ
06 xj 6 10b; �h6 yj 6 0 ðj¼ 0; . . . ;ng6Þ ðhÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð4Þ
Eq. (4a) presents the constraints of the velocity discontinuities,

where n0i and n00i are auxiliary parameters that used to explain the
associated flow rule along velocity discontinuities, and nd is
the total number of velocity discontinuities. Eq. (4b) presents the
geometric constraints of the elements; Eq. (4c)–(4g) define the
constraints along boundaries G1G2, G1G5, G4G5, G3G4, and G2G3,
respectively, where xj and yj are nodal coordinates at the geometric
boundaries, and nvi and ngi define the total number elements and
nodes at the velocity and geometric boundaries, respectively. Eq.
(4h) presents the geometric constraints for nodal coordinates
above the sand-basement interface. Other variables are precisely
the same as those used in Yang et al. [14]. After obtaining the mag-
nitude of qu min, Nc is then calculated using Eq. (1).

4. Results and discussions

4.1. Comparisons of N0
c for strip footings without rigid basements

For strip footings without rigid basements, the N0
c values for

different values of / obtained by the UBFEM-RTME are compared
in Table 1 with previously reported results using different

Fig. 1. Models and mesh divisions for the bearing capacity of strip footing with rigid basement.
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