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a b s t r a c t

Using multiphysics computer codes has become a useful tool to solve systems of partial differential equa-
tions. However, these codes do not always allow for the free introduction of implicitly defined state func-
tions when automatic differentiation is used to compute the iteration matrix. This makes it considerably
more difficult to solve geomechanical problems using non-linear constitutive models. This paper pro-
poses a method for overcoming this difficulty based on multiphysics capabilities. The implementation
of the well-known Barcelona basic model is described to illustrate the application of the method. For this
purpose, without including formulation details addressed by other authors, the fundamentals of its
implementation in a finite element code are described. Examples that demonstrate the scope of the pro-
posed methodology are also presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the application of numerical methods, particu-
larly the finite element method (FEM), for solving boundary prob-
lems in soil mechanics has grown considerably, as illustrated by
the high quality and large number of published papers on the sub-
ject. Among the noteworthy contributions to this area of research
are those by Potts and Gens [1], Potts and Zdravkovic [2], Sheng
et al. [3], Sheng et al. [4], Sheng et al. [5], Borja [6] and Gens and
Potts [7]. The algorithms they propose have been implemented
both in FEM codes developed primarily for research purposes
[see 8,9 and 10] and in commercial FEM software [see, among oth-
ers, 11–13], which include modules that facilitate the simulation of
the behaviour of a large number of geotechnical structures (e.g.,
embankments and cuts, earth dams, retaining walls, slopes, tun-
nels and foundations).

The use of Multiphysics Partial Differential Equation Solvers
(MPDES) emerges as a useful tool for the numerical solution of geo-
technical problems [14]. With this class of solvers, the user defines
the governing equations and models for the behaviour of the

system. The code takes automatic control of assembling and solv-
ing the system of equations without it being necessary to redefine
the memory storage structures or to implement the algorithms for
its solution. The user focuses on the physics of the problem, which
allows for the coupling of almost any physical or chemical process
that could be described through Partial Differential Equations
(PDEs). This coupling ability is one of the main advantages of
MPDES. In addition, some MPDES include specific stress–strain
models for geomaterials in their libraries. For instance, COMSOL
Multiphysics (CM) [15], the multiphysics partial differential equa-
tion solver used as a reference in this work, introduces a variety of
saturated geomechanic material models (modified Cam-Clay,
Matsuoka–Nakai, Hoek–Brown, among others).

Although built-in models are of great use, ideally users would
be able to implement any desired stress–strain model. In principle,
MPDES interfaces are adapted to so. Their structure enables to de-
fine different constitutive models. However, an important diffi-
culty may arise when non-linear models are used. Several MPDES
include automatic differentiation modules [16–19]. This method
of evaluating derivatives has experienced a rapid advance, becom-
ing an efficient tool in computing technology [20,21]. Some codes,
as CM, differentiate symbolically all expressions that contribute to
the iteration matrix [22]. In such case, if there are state functions
defined through implicit relationships (as it happens in non-linear
constitutive models), their derivatives cannot be calculated. Thus,
the iteration matrix cannot be defined, and the program fails to
solve the problem. Therefore, elastoplastic models cannot be freely
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implemented because they contain an implicit coupling between
the stresses, plastic strains, and plastic variable increments. It is
not possible either to implement simple models for non-linear
elasticity, because both the volumetric and shear moduli are func-
tions of stresses that must be calculated. This inability implies a
very important limitation for the use of MPDES such as CM in
the analysis of geomechanical boundary value problems.

This paper proposes a strategy for solving this problem using
the multiphysics concept. A mixed method [see, for instance, 23]
is proposed that identifies the stresses and plastic variables as
main unknowns of the model. In this manner, users can freely
introduce models with implicit couplings among the variables. To
illustrate the application of the method, the Barcelona Basic Model
(BBM) [24], a reference critical state model in unsaturated soil
mechanics, has been implemented and analysed.

2. Formulation of the problem

To simplify the description of the methodology when analysing
the mechanical behaviour of unsaturated soils, a soil consisting of
three species, soil skeleton, water and air is considered in three
phases: solid, liquid and gas. The presence of solids dissolved in
the water is not considered, whereas the presence of dissolved
air is considered according to Henry’s law. The gas is formed by a
mixture of dry air and water vapour. The presence of vapour mixed
with air in the gas phase is considered in accordance with the psy-
chometric law. Because of this consideration, and assuming a dis-
placement finite element approach, the solid displacements u,
liquid pressure PL and gas pressure PG are the ‘main unknowns’
(state or primary variables) of the problem, and the mass balance
of the species (soil, water and gas) and the equilibrium equation
are the PDEs to solve. Isothermal conditions are assumed. Thus,
no enthalpy balance is solved, and the temperature remains con-
stant. The mass-balance equations implemented in the solver have
been described in detail by Navarro and Alonso [9] and Alonso
et al. [25].

The equilibrium equation is formulated in terms of the total
stress tensor rTOT as follows:

rrTOT þ qgk ¼ 0 ð1Þ

where ‘r�’ is the divergence operator, q is the average soil density, g
is the gravitational acceleration, and k is a unit vector in the direc-
tion of gravity. The total stress tensor rTOT is different from the con-
stitutive stress r used in the constitutive model. In this work, r is
assumed equal to the net stress (r = rTOT � PG�m, where m is the
vector form of the Kronecker delta), and the mechanical behaviour
of the soil is described by the pair of net stress and matric suction
s = PG � PL [26]. Thus, using the notation of Solowski and Gallipoli
[27], the general constitutive relation is obtained as follows:

dr ¼ Deldeel;r ¼ Delðde� ðdepl þ deel;sÞÞ ð2Þ

where Del is the elastic matrix, and deel,r is the elastic strain asso-
ciated with changes in the constitutive stresses. This latter term is
the difference between the strain de (obtained by spatial differenti-
ation of u) and the sum of the plastic strain depl and elastic strain
due to suction changes deel,s.

Introducing the definition for the plastic potential and the hard-
ening law, the following relation is obtained [28]:

dr ¼ Dep;edeþ Dep;sds ð3Þ

where Dep,e is a 6 � 6 (three-dimensional problem) matrix defined
as follows [27]:
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pl being the plastic volumetric strain, ‘T’ the transpose operator,

and F the yield function. Dep,s is a 6 � 1 array defined as:
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where, if the BBM is used, the 6 � 1 array b is given by the expres-
sion [27]:

b ¼ 1
3

js

ðPATM þ sÞð1þ eÞm ð6Þ

being js the elastic modulus for changes in suction, PATM the atmo-
spheric pressure, and e the void ratio (assumed to be 100 kPa). As in
other critical state models [29], the preconsolidation pressure p�O in
Eqs. (4) and (2) is the model hardening parameter, defined in Fig. 1,
where the ‘hardening direction’ g is also defined. For simplicity, in
this work, g is taken as normal to F in the s = constant plane, but
it is simple to adapt the formulation to introduce a different flow
rule. The variation of p�O with respect to eV

pl constitutes the harden-
ing law, which is formulated according to the expression [27]:

dp�O ¼ Hedeþ Hsds ð7Þ

where the vector He (6 � 1) and scalar Hs are defined as:
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Therefore, if both a ‘generalised’ (or ‘enhanced’, in keeping with
the notation of Solowski and Gallipoli [27]) strain vector eenh =
(e, s), which includes strain and suction, and an ‘enhanced’ stress
vector renh ¼ ðr; p�OÞ, which includes the constitutive stress and
the hardening parameter, are defined, the following equation is
obtained:
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Fig. 1. General form of the yield function. CSL is the Critical State Line.
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