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a b s t r a c t

The analysis of the wave propagation in layered rocks masses with periodic fractures is tackled via a two-
scale approach in order to consider shape and size of the rock inhomogeneities. To match the displace-
ment fields at the two scales, an approximation of the micro-displacement field is assumed that depends
on the first and second gradients of the macro-displacement through micro-fluctuation displacement
functions obtained by the finite element solution of cell problems derived by the classical asymptotic
homogenization. The resulting equations of motion of the equivalent continuum at the macro-scale result
to be not local in space, thus a dispersive wave propagation is obtained from the model. The simplifying
hypotheses assumed in the multi-scale kinematics limit the validity of the model to the first dispersive
branch in the frequency spectrum corresponding to the lowest modes.

Although the homogenization procedure is developed to study the macro-scale wave propagation in
rock masses with bounded domain, the reliability of the proposed method has been evaluated in the
examples by considering unbounded rock masses and by comparing the dispersion curves provided by
the rigorous process of Floquet–Bloch with those obtained by the method presented. The accuracy of
the method is analyzed for compressional and shear waves propagating in the intact-layered rocks along
the orthotropic axes. Therefore, the influence of crack density in the layered rock mass has been analyzed.
Vertical cracks have been considered, periodically located in the stiffer layer, and two different crack
densities have been analyzed, which are differentiated in the crack spacing. A good agreement is obtained
in case of compressional waves travelling along the layering direction and in case of both shear and
compressional waves normal to the layering. The comparison between two crack systems with different
spacing has shown this aspect to have a remarkable effect on waves travelling along the direction of
layering, and limited in the case of waves propagating normal to the layers.

The equivalent continuous model obtained through the dynamic homogenization technique here
presented may be applied to the computational analysis of non-stationary wave propagation in rock
masses of finite size, also consisting of sub-domains with different macro-mechanical characteristics.
This avoids the use of computational models represented at the scale of the heterogeneities, which
may be too burdensome or even unfeasible.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that fractures and layering in rock masses have
a large impact on both the mechanical and hydraulic behavior of
rock masses. Notably, the overall properties of the rock systems de-
pend not only on the mechanical parameters of the intact rock but
also on the joints and fractures behavior and distribution (i.e. their
spacing, length, condition, orientation, continuity and the number
of joint sets) and on the layering morphology (see for Refs.
[21,8,18,13]). This point is remarkable when seismic elastic waves
are considered because fractures and joints can trap and guide

waves and their behavior may prove useful for probing the geo-
metrical and mechanical properties of the fractures [6].

A large number of studies on wave propagation in fractured
rock masses have been developed over the past two decades.
Although it is well known that in fractured and porous reservoirs
the effect of saturating fluid on wave propagation may be signifi-
cant (see [15]), because the fluid may cause significant frequency
dependent attenuation and dispersion, these effects also occur in
drained conditions in case of layered or fractured rocks [19]. Based
on the displacement discontinuity approach [22], different contri-
butions to the understanding of the influence of rock cracking on
wave propagation have been given (see [8], among the others). In
addition, computational approaches have been proposed, including
the distinct element method that has aroused considerable interest
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(see [16,25]). A complementary approach is based on the descrip-
tion of the cracked rock as an equivalent continuum whose effec-
tive parameters are derived by homogenization techniques (see
for Ref. [14]). In this context, the choice of the equivalent contin-
uum to be considered depends on the wavelength compared to
the characteristic size of the rock meso-structure. In the long-
wavelength limit, when the size of the seismic wavelength is much
larger than the layer and/or fracture spacing, the wave propagation
may be analyzed by the effective medium theory, i.e. the classical
Cauchy model. However, when the wavelength becomes smaller, a
dispersive behavior is obtained that may be significantly affected
by the layer and fracture spacing. If rock masses with stratification
and periodic cracking are considered, the propagation analysis of
dispersive waves can be performed through the classical approach
of Floquet–Bloch at the periodic cell level. However, in the more
general case of wave propagation in bounded domains the analysis
of the heterogeneous model would be very labor intensive so that
multi-scale approaches based on non-local homogenization tech-
niques are preferred (see [10,9,2,3]).

In the present paper, a dynamic homogenization procedure is
addressed to the study of layered rock systems. This procedure
(also developed in [3] and applied to layered materials in analytical
form) is an enhancement of a previous approach already proposed
by the Authors [2]. In this contribution the overall second order
elastic moduli and inertia terms are obtained as the result of a
variational-asymptotic homogenization based on a proper down-
scaling law, in which the fluctuation field at the micro-scale is
assumed in a proper form that satisfies the continuity at the inter-
face of adjacent cells. To evaluate the accuracy of the dynamic
model defined in the equivalent homogeneous continuum, a peri-
odic stratified rocky system is considered. The dispersion curves of
shear and compressional waves along and transversely to the
direction of the layers obtained by this model are compared with
those by the rigorous approach by Floquet–Bloch. Therefore, in or-
der to catch the influence of cracks on the dynamic response, the
case of stratified rocks with periodic fissuring of rigid layers in
agreement with [12,4], is considered. Two different crack spacings
are considered with the dual purpose to compare these results
with those of the intact rock system and to appreciate the influence
of the ratio between the crack spacing and thickness of the layers.

2. The micro-scale dynamic model for elastic periodic layered
rock masses

A 2-D description of the layered rock mass is considered as an
elastic periodic bimaterial undergoing plane strain deformation
within the classical elasticity theory (Fig. 1). A periodic horizontal
distribution of vertical cracks is assumed as given in the phases. As
a consequence the resulting periodic material may be fully charac-
terized by the periodic cell A = [0, de] � [0, e] with characteristic

size e shown in Fig. 1b, which is spanned by the two independent
orthogonal vectors v1 = d1e1 = dee1, v2 = d2 e2 = ee2. The elasticity
tensor Cm;eðxÞ and the mass density qe(x) are A-periodic, i.e.
Cm;eðxþ viÞ ¼ Cm;eðxÞ;qeðxþ viÞ ¼ qeðxÞ; i ¼ 1;2;8x 2 A (the
material point is identified by vector x = {x1 x2}T). Moreover, a sim-
plified description of the cracks is assumed where both normal and
tangential displacement jumps across the crack faces are allowed,
without considering unilateral and frictional effects. This traction-
free boundary condition on the crack faces is obtained by model-
ling the cracks as rectangular regions having small width and van-
ishing elastic stiffness. This suggest to consider a unit cell
Q = [0, d] � [0, 1] that reproduces the periodic microstructure by
rescaling with the small parameter e so that the two distinct scales
are represented by the macroscopic (slow) variable x 2 A and the
microscopic (fast) variable n = x/e 2 Q. The mapping of both the
elasticity tensor and of the mass density may be defined on Q as
follows: Cm;eðxÞ ¼ Cmðn ¼ x=eÞ;qeðxÞ ¼ qðn ¼ x=eÞ, respectively.
The (micro) displacement u(x, t) of a material point x at time t is
considered together with the corresponding (micro) strain tensor
e(x, t) = symru(x, t). Moreover, the (micro) stress tensor is given
by the elastic constitutive equation rðx; tÞ ¼ Cm x

e

� �
eðx; tÞ and it

has to satisfy the local equation of motion
divrðx; tÞ ¼ q x

e

� �
€uðx; tÞ � fðx; tÞ, where f(x,t) is the body force. The

resulting set of partial differential equations is written in the form

div Cm x
e

� �
ruðx; tÞ

� �
¼ q

x
e

� �
€uðx; tÞ � fðx; tÞ; ð1Þ

with the fourth-order elasticity tensor having the property
CmZ ¼ CmsymZ;8Z.

It should be noted that the two-dimensional model described
above could be extended to the more general case of periodicity
of the rock mass also along axis x3 (with periodicity vector v3). In
this case, the cell is represented by a periodic rectangular cuboid
and the equation of motion (1) is written in components according
to the three orthogonal directions. In fact, when the structure of
the rock mass is not uniform along axis x3, but periodic, the motion
is no longer in-plane and inertial effects appear also along direction
x3. The two-dimensional model cannot directly describe this condi-
tion and a three-dimensional model is needed that is far more
computationally onerous.

3. The macro-scale second-order dynamic model

From the equation of motion (1) it is convenient to express the
micro-displacement field uðx; n ¼ x

e ; tÞ as a function of both the
slow x and the fast n variables, respectively, as usually is made in
asymptotic homogenization. Moreover, in the following, the mi-
cro-displacement is considered to be L-periodic, being
L = [0, dL] � [0, L] with L fixed such that L/e is a large integer
number. This condition is fulfilled in the case of L-periodic body

(a) (b)
Fig. 1. (a) Fissured layered rock mass with periodic structure; (b) unit cell and periodicity vectors.
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