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a b s t r a c t

Lagrangian analysis method derives the specific internal energy, strain, and stress and particle velocity
histories from either stress or particle velocity records from a series of gauges embedded in material.
However, if only particle velocity is obtained, the existing Lagragian analysis methods need to know
stress at initial Lagrangian position. In this paper, a new Lagrangian analysis method for multiple particle
velocity gauges (termed path-line time stepping) is presented. The method can derives the stress from
particle velocity records without any initial conditions. Besides, the method is applied to measure waves
in concrete. And the verification of the analysis for attenuating waves is studied by numerical simulation
that reproduced the stress-strain histories.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of safety in modern impact technology is
widely appreciated. Consequently, constitutive model of solid
materials at high strain rates attracts increasingly interests [1–5].
The Lagrangian analysis method is the implantation of a series of
two or more stress or particle velocity or strain gauges in the test
material to record the passage of the disturbance. The gauges are
termed ‘‘Lagrangian” because they move with the material. Lagran-
gian analysis method is mainly numerical technique for treating
the resulting gauge records to direct obtain the stress-strain rela-
tions for the material. This method is applicable to arbitrarily com-
plex materials and has been widely used to study the dynamic
mechanical response of materials subject to impact loading.

Lagrangian analysis method was first introduced by Fowles R.
and Williams R. F. [6,7]. They deduced the time-dependent consti-
tutive relation of materials by the so-called Lagrangian analysis
without introducing additional assumption of constitutive relation.
However, the Fowles-Williams method is validated only when all
gauges reach the same peak value without wave decaying.
Cowperthwaite and Williams provided a generalization of the
Fowles-Wiliams method. Their result [8] can be applied to the data
in which there is an attenuation of the peak stress or particle veloc-
ity. Grady [9] introduced a concept of the path lines as an aid in

computing derivatives for attenuating flow. Based on the
path-line method, Seaman [10] developed the surface fitting
method and assumed that the fitting surface is monotonous and
smooth, and the third-order partial derivatives are equal to zero

(d3r=dh3 � 0). Lagrangian inverse analysis [11–13] avoided
Seaman assumption and obtains the stress of the flow field.
However, the result depends on the assumed form of the unknown
stress function which may produce non-unique solution. This
method has been denied by Seaman. To verify the reliability of
the computed results, Gupta [14] proposed a self-consistent test
method to calculate the stress waves from the particle velocity
waves and then obtain the particle velocity waves from the calcu-
lated stress waves by inverse operation. Forest [15] proposed the
impulse time integral method for data processing and variance
estimation. However, it is still difficult to establish the precise
function form when the measurement does not involve the stress.
Wang et al. [16] proposed a new method that combines the
Lagrangian analysis with the Hopkinson pressure bar (HPB) tech-
nique. However, the initial strain still depends on mathematical
processing. However. Since the 1970s to 2010s, a few articles
[17–21] continued to improve the numerical technique and engi-
neering applications of Lagrangian analysis method.

Lagrangian analysis method can be used to analyze currents and
flows of various materials [22,23] by analyzing data collected from
gauges embedded in the material which move freely with the
motion of the material. Therefore, Lagrangian analysis method is
mainly adapted to study the materials strain rate-dependent
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elastic–plastic constitutive characteristics. Specifically, there are
three solutions.

(1) Once one-dimensional stress histories rðhk; tÞ
(k ¼ 1;2; � � �m) were measured by m stress/pressure gauges
embedded in the specimen at m Lagrangian positions hk, it
is easy to determine the dynamic stress-strain curves by
the traditional Lagrangian analysis method. In fact, with
the measured stress rðhk; tÞ, the corresponding first-order
partial derivatives of stress rðhk; tÞ with respect to time t
and Lagrangian positions hk can be numerically calculated.
According to the momentum conservation equation, the
first-order partial derivatives of particle velocity uðhk; tÞwith
respect to t can be determined. Usually, the initial condition
uðhk;0Þ ¼ 0 is known. Thus, the particle velocity uðhk; tÞ at
different Lagrangian positions hk can be integrated through
time t. Similarly, the strain eðhk; tÞ at hk can be determined
from the mass conservation equation. Finally, the stress
rðhk; tÞ and the deduced eðhk; tÞ at hk can be obtained.

(2) However, if particle velocity histories uðhk; tÞ have been
measured by m velocity gauges embedded in the specimen
at m Lagrangian positions hk, it is difficult to solve the stress
rðhk; tÞ and strain eðhk; tÞ at hk. The integration cannot be
performed along the path-line due to no initial value for
stress rðhk; tÞ. Thus, in order to completely determine the
stress rðhk; tÞ in the flow field, a known stress history is
required at some point in the flow. It means that a simulta-
neous measurement of particle velocity uðhk; tÞ and the ini-
tial stress rð0; tÞ is required. By doing so, the strain eðhk; tÞ
at hk can be determined from the mass conservation
equation.

(3) Furthermore, if strain histories eðhk; tÞ are measured by m
velocity gauges embedded in the specimen at m Lagrangian
positions hk, it becomes more difficult to determine the
stress rðhk; tÞ and velocity uðhk; tÞ at hk. The reason is that
the initial conditions rð0; tÞ and uð0; tÞ are all unknown. It
means that a simultaneous measurement of strain histories
eðhk; tÞ, the initial stress rð0; tÞ and particle velocity uð0; tÞ
is required. It is seen that the third case is the most complex
and difficult one due to two required initial conditions.

The traditional Lagrangian analysis method is for the first case
that derives the physical quantities’ histories with the stress mea-
sured in experiment. However, the time response of the particle
velocity gauges are greater than the manganin gauge, and the valid
records is longer. So, the particle velocity gauge is more suitable for
measuring the passage of the disturbance. In the following para-
graphs we describe the analysis procedure that only need particle
velocity histories. The analysis derives the stress and strain histo-
ries from the particle velocity records without introducing addi-
tional assumptions. Two advantages will be achieved in this
analysis. (1) It guarantees the uniqueness of the data. (2) Only
the first-order derivatives and partial derivatives of the physical
quantity are involved, which greatly reduces the impact of the local
jitter of the test data on processing results.

2. Lagrangian analysis method

A detailed description of the basic principle of the Lagrangian
analysis had been made by Fowles in 1973. For convenience, we
consider a case of one-dimensional stress waves propagating in a
rate-dependent material, which corresponds to the propagation
of time-dependent non-simple waves with attenuation and
dissipation characters. So the Lagrangian analysis is mainly based
on the following three conservation equations without any

assumption of material constitutive relation. In Lagrangian coordi-
nates these relations are:
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where r is the stress in the direction of propagation, u is the particle
velocity, e is the strain, E is the specific internal energy, h and t are
the Lagrangian position and time respectively, q0 is the initial den-
sity. The conservation equation of momentum maybe describe a
relation between the partial derivative of stress r with respect to
h and the partial derivative of particle velocity u with respect to t.
The conservation equation of mass maybe give a relation between
the partial derivatives of strain e with respect t and the partial
derivative of particle velocity u with respect to h. The conservation
equation of energy maybe show a relation between the partial
derivatives of specific internal energy E with respect to t, stress r
and the partial derivatives of particle velocity u with respect to h.
As the result, the basic conservation equations give a relation
between dynamic stress r, strain e and particle velocity u. And
the relationship between stress r and strain e must be given by
the particle velocity u.

The variables connected by conservation Eqs. (1), (2) and (3) are
not the stress r, strain e and particle velocity u themselves but the
first-order partial derivatives of them. Thus, in order to derives the
stress r, strain e and particle velocity u from either stress r or par-
ticle velocity u, the preceding equations are required to integrate
along lines of constant h (the particle line).

Eqs. (1)-(3) requires development of methods to (i) smooth the
raw gauge records; (ii) divide the records into discrete time inter-
vals; (iii) construct the path-line as an aid in computing derivatives
needed for attenuating flow; (iv) numerically evaluate the partial
derivatives; (v) perform the integrations. The approach can be
visualized with the aid of Fig. 1 which shows a series of smoothed
velocity histories above a Lagrangian distance-time (h-t) plane.

The original calibrated velocity-time data u�, t� obtained from
the gauge records are replaced by a series of points uJ;k, tJ;k, which

Fig. 1. Lagrangian particle velocity gauge records.

W. Tao et al. / Construction and Building Materials 120 (2016) 524–529 525



Download English Version:

https://daneshyari.com/en/article/255873

Download Persian Version:

https://daneshyari.com/article/255873

Daneshyari.com

https://daneshyari.com/en/article/255873
https://daneshyari.com/article/255873
https://daneshyari.com

