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a  b  s  t  r  a  c  t

Excepting  the  Peripheral  and  Central  Nervous  Systems,  the Immune  System  is  the  most  complex  of
somatic  systems  in higher  animals.  This complexity  manifests  itself  at many  levels from  the  molecular
to  that  of  the  whole  organism.  Much  insight  into  this  confounding  complexity  can  be gained  through
computational  simulation.  Such  simulations  range  in  application  from  epitope  prediction  through  to
the  modelling  of  vaccination  strategies.  In this  review,  we evaluate  selectively  various  key  applications
relevant  to  computational  vaccinology:  these  include  technique  that  operates  at different  scale  that  is,
from molecular  to organisms  and  even  to population  level.
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Introduction

Despite its overwhelming and often confounding complexity,
the immune system is ultimately a collection of parts working
together to effect defence against pathogens and many other
homeostatic functions. The problem, of course, when one tries to
understand the immune system, is the remarkable level of emer-
gent behaviour we observe-at many levels-from the formation
of supramolecular complexes at the Immune synapse; through
the action of specific immune cells, such as dendritic cells and
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T-cells; to organs; and, finally, whole organisms. Beyond even
the whole animal, effects such as herd immunity and infectivity
patterns manifest themselves only in large, interacting pseudo-
social networks. As we see, or allude to, elsewhere, much of this
can be modelled, and modelled with some success. Yet despite
the daunting emergent, higher-level behaviour we see, much
can still be learned from attempting to understand and model
the underlying molecular components that comprise the immune
system.

Nowadays biological systems are analyzed and managed by
means of new emerging technologies that are revolutionizing
biotechnology and information technology, producing a huge
amounts of data. This data needs to be integrated and is quickening
the process of knowledge discovery, enabling the study of biologi-
cal systems at various levels i.e., from molecules to organisms and
even to the population level.
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The human activity entailing the representation, the manip-
ulation and the communication of real-world daily life objects
is known as modelling. Mathematical and computational models
are gradually used to assist deduce biomedical data produced by
high-throughput genomics and proteomics endeavours. The appli-
cation of advanced computer models allowing the simulation of
complex biological processes produces hypotheses and proposes
experiments. Computational models are set to exploit the wealth
of data stored on biomedical databases through text mining and
knowledge discovery methods.

The first immunoinformatics tools for vaccine design were
developed in the 1980s by DeLisi and Berzofsky and others [56].
Chief among vaccine design informatics tools are epitope-mapping
algorithms. A new era of vaccine research began in 1995, when
the complete genome of Haemophilus influenzae (a pathogenic
bacterium) was published [58]. In parallel with advances in molec-
ular biology and sequencing technology, bioinformatics analysis
of microbial genome data has allowed in silico selection of vac-
cine targets. Further advances in the field of immunoinformatics
have led to the development of hundreds of new vaccine design
algorithms. This novel approach for developing vaccines has been
named reverse vaccinology [59] or immunome-derived vaccine
design [60]. Pharmaceutical companies are starting to use models
to optimize/predict therapeutic effects at the organism level, sug-
gesting that computational biology can effectively play a key role
in this field [57].

Along with these techniques, the simulation of the immune
system in a detailed way to reproduce and predict the effects of
artificial immunity elicited by vaccines represents a challenge that
several people are attempting with success. The immune system
represents one of the most complex biological system. It is, in
fact, an adaptive learning system which operates at multiple lev-
els (molecules, cells, organs, organisms, and groups of organisms).
Immunological research, both basic and applied, needs to deal with
this complexity [4].

In this paper, we analyze and discuss several computational
modelling techniques applied to vaccinology science.

Epitopes

Arguably, the simplest unambiguous component of the immune
is the so-called epitope. The epitope at its most generally defined is
very much the immunological quantum that lies central to immune
responses and vaccination. It is the ability of the immune system
to identify, respond to, and remember epitopes that powers natu-
ral immunity, and thus vaccination. Peptide epitopes are mediated
primarily by their interaction with Major Histocompatibility Com-
plexes (T-cell Epitopes, or TCEs) and antibodies (B-cell epitopes, or
BCE).

Currently, commonly-used prediction of B cell epitopes often
remains primitive, or depends on an elusive knowledge of protein
structure, and both structure- [9] and data-driven [10] predic-
tion of antibody-mediated epitopes have again been shown to be
poor. Explaining such sub-optimality may  point to a fundamen-
tal misinterpretation of extant epitope data. PEPSCAN is perhaps
the most abundant data available currently but may  not be what it
seems. Experimentally derived epitopes are identified by assayed
against pre-existing antibodies with affinity for whole antigens. If,
for example, “epitopes” are mapped back to their original antigen
structure, we find them randomly located through the structure
rather than equating to obvious surface patches, as might be
expected if they simply reproduced discontinuous epitopes iden-
tified by crystallography. In situ antigenic regions are often not
exposed and thus accessible to binding by antibodies binding
but rather completely buried. If we compare the conformation

of antibody-bound peptides with those from the intact antigen,
they are usually quite different. However, B-cell epitopes in iso-
lated antigen and in whole antigen-antibody complexes are much
more similar. Is it possible then, that the isolated peptide adopts
a conformation which mimics the surface features of a discontin-
uous epitope or that the preformed antibody recognize denatured
antigen in vivo.

Currently, prediction of T cell epitopes remains largely con-
fined to predictions of varying accuracy of peptide binding to Major
Histocompatibility Complex. Nonetheless, and compared to B-cell
prediction, methods for predicting T cell epitopes show significant
algorithmic sophistication. Prediction of the binding of peptides
to class I MHCs, at least for well-studied alleles, such as HLA-
A*0201, is now at useable accuracy [11]. However, comparative
studies have shown recently that the prediction of class II MHC
binding prediction T-cell epitopes is typically poor [12–15], and
likewise for structure-driven prediction of class I and class II T-cell
epitopes [16].

All epitope prediction methods remain severely constrained
by the data used to construct them; this is particularly true of
T-cell prediction. It has recently been shown that that T-cell epi-
topes, which were previously thought to be short peptides of
8–10 amino acids, can be up to 16 amino acids or perhaps even
more. The existence of such longmer epitopes has significantly
enlarged the repertoire of peptides open to inspection by T-cells
[17]. Many of the cutting edge approaches to epitope discovery
are trying to address these issues by inducing models of large
numbers of alleles across many peptide lengths by making assump-
tions about how separable are the sub-sites in the peptide binding
groove and how thee can be combined combinatorially to gener-
ate pseudo-binding profiles [18–20]. However, as is well-known,
no data-driven method can go beyond the data used to train it; all
methods are likewise much superior in their ability to interpolate
than their ability to extrapolate.

Evidence exists that the responsiveness of the immune system
to pathogenic proteins is only poorly correlated with the posses-
sion of T cell epitopes, and that many potential epitopes have been
deleted in proteins regularly accessible to immune surveillance,
perhaps as an evolutionary counter measure in the war  between
host and pathogen [21]. Such a deficit, and the significantly sub-
optimal prediction of both B-cell and T-cell epitopes described
above have suggested that methods which rely solely on the posses-
sion of epitopes are unlikely to be effective at identifying antigens
or immunogens. This conjecture is confirmed by what information
there is, which indicates that there is little simple correspon-
dence between antigens selected on this basis and experimentally
verified antigenic or protective proteins. In turn this has led to
the development of other approaches to predicting whole anti-
gens within pathogen genomes, proteins likely to be antigenic and
protective; of which there are three key approaches: subcellular
location prediction, sequence similarity, and empirical statistical
approaches, typified by VaxiJen [22,23] and expert systems such as
nerve [24].

PAMPS and adjuvants

Other epitopes exist, notable the so-called Pathogen-Associated
Molecular Pattern (or PAMP), highly conserved and typically
complex molecular moieties recognized by pattern recognition
receptors (or PRRs) of the innate immune system [25]. Many PAMPs,
and molecules mimicking the recognition of PAMPs, form the basis
of adjuvants. Adjuvants potentiate immune responses, reducing the
dosing requirements needed to induce protective immunity, par-
ticularly for weakly immunogenic subunit vaccines. Few adjuvants
are licensed for human use: principally alum, and squalene-based
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