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Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties
of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies
are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological
properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling
methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in
predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper re-
views the progress these methods, particularly those QSAR-based, have made in understanding and predicting
potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods.
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1. Introduction

Nanomaterials provide an unprecedented opportunity to develop
new materials with hitherto unattainable properties because of their
unique and increasingly controllable molecular attributes. Consequently,
nanomaterials research is accelerating, and products incorporating
nanomaterials are being introduced to the marketplace very rapidly. It
is estimated the approximately 50,000 products now contain some form
of nanomaterial (the Wilson Centre has an inventory of ~2000 products,
far from complete see http://www.nanotechproject.org/cpi/). The global
market for nanotechnology products was valued at $26 billion in 2014
and is expected to reach about $65 billion by 2019, a compound annual
growth rate 20% (bcc Research, 2014).

There is always a necessary tension between the need for new mate-
rials with useful properties to be made available quickly, and the need to
protectworkers, the public, and the environment fromany deleterious ef-
fects of these materials (Forloni, 2012). The pace at which nanomaterials
are being commercialized has left regulatory agencies struggling to pro-
vide legislative frameworks and guidelines on their safe use. The

manufacturers cannot be relied on to know the extent of the
nanomaterial content of their products or to state it (see Fig. 1). The ‘pre-
cautionary principle’ adopted by pharmaceutical and agricultural and vet-
erinary chemical companies is not as rigorously applied to nanomaterials,
opening the door for potentially serious consequences of premature
translation to the market.

The assessment of the possible adverse biological effects of
nanomaterials is more complex than with industrial chemicals and
drugs. Small organicmolecules are always identical (unlessmetabolized
or chemically modified by their environment) and they have predict-
able properties can be readily encoded by mathematical objects called
molecular descriptors. However, nanomaterials (and many other types
of complex materials being actively developed) exist as populations of
different but related materials that span a range of, most significantly,
size, shape, and composition. The nature of the ‘biologically relevant
entity’ that interacts with living systems is quite context dependent.
The composition, size, shape, aqueous solubility, manufacturing and
processing history, surface modifications, propensity to agglomerate,
interactions with ions, salts, proteins, humic substances and other bio-
logical macromolecules can all have a major influence on the biological
effects of nanomaterials, unlike small organic molecules which have
unambiguous structures and potentially less complex, more specific
biological interactions.
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Additional pressures have been brought to bear on regulatory agen-
cies and research providers analysing the properties of nanomaterials
due to the cost, time-consuming nature of biochemical assays, and the in-
creasingly prominent ethical issues in using experimental animals. Conse-
quently, the amount of data available on the effects of nanoparticles is
insufficient for regulatory purposes (Arora et al., 2012).

The lack of data is being addressed by the development of high
throughput synthesis, characterization, and biological testing methods
at many sites around the world. This can greatly assist with the
availability of data on possible adverse effects of nanomaterials. The
development of surrogate assays, fast screens whose results correlate
with those of slower more rigorous biological tests, can also accelerate
data generation. In a similar vein, in vivo properties that are very
difficult or impossible to conduct for cost or ethical reasons may some-
times be estimated by use of well-designed in vitro biological assays,
with additional information fromchemical ormaterials structure or phys-
icochemical properties.

Modern molecular modelling methods, chiefly machine learning
methods, that were developed for predicting the biological effects of
drugs and industrial chemicals can play an important part inmorewidely
leveraging this limited and expensive biological data. Data driven, statisti-
cal modelling methods have been valuable for analysing large biological
data sets generated by the pharmaceutical and agrochemical industries
using combinatorial chemistry and high throughput screening. If a
model can be devised that can explain either the mechanism by which
a nanomaterial exhibits its adverse biological effects, or predicts the prob-
ability and magnitude of such an effect (or both, ideally), then interpola-
tion and some limited extrapolation can be used to infer the likely
properties of other materials not tested. Such approaches have been
widely used by major regulatory agencies to prioritize industrial
chemicals for further mammalian or environmental toxicity testing, and
agencies are comfortablewith using a similar approach for nanomaterials.

These statistical methods, described generically as Quantitative
Structure–Property (or Activity) Relationships (QSPR or QSAR)
modelling, are data driven methods that work best with large, di-
verse data sets. Initial concerns that their use may not be translatable
from the small organic molecule domain to the complex materials
domain have largely dissipated. Most of these methods are ‘platform
technologies’ than can make reliable, often quantitative models of
complex relationships between objects (molecules, polymers,
nanomaterials etc.) and properties (biological effects, physical and
mechanical properties etc.) (Le et al., 2012). They are currently the
only computational methods capable of making useful predictions
of properties of nanomaterials in realistic (non-idealized) environ-
ments. The remainder of this paper summarizes successes and fail-
ures of computational modelling methods, largely QSPR methods,
in providing mechanistic insight and/or predicting the effects of
nanomaterials on biology from a nanosafety and regulatory perspec-
tive. There is a large amount of work on designing and modelling
nanoparticles for diagnostic and therapeutic medicine, reviewed re-
cently, and not discussed here (Teli et al., 2010; Zhang et al., 2012;
Lehner et al., 2013; Chaudhury et al., 2014).

2. Ab initio modelling of the structure and properties of pristine
nanoparticles

Although the nature of nanoparticles and their interactions with bio-
logical and other environments is very complex, much can be learned
from high level ab initio quantum chemical calculations of pristine nano-
particles in vacuo or in solution. Barnard's group has lead much of this
work (Barnard, 2009; Barnard, 2010; Feigl et al., 2010; Barnard and
Snook, 2011b; Guo and Barnard, 2011a; Guo and Barnard, 2011b; Guo
andBarnard, 2013; Barnard, 2014b; Barnard, 2014a).Molecular dynamics
methods are increasingly being used to simulate the interactions of
nanomaterials with proteins, cell membranes, DNA etc. (see specific ex-
amples below) (Makarucha et al., 2011). As computing hardware be-
comes faster and algorithms more efficient, these computational
methods will start to impact increasingly on ‘real world’ nanoparticle
properties (Barnard and Snook, 2011a). A synergistic merging or conver-
gence of machine learning with first principles method (Barnard, 2014b)
is also likely to accelerate progress into understanding the interactions of
nanomaterials with their environments, and allowmore accurate predic-
tions of putative adverse effects.

3.Modelling the interaction of nanoparticleswith their environments

The question of the nature of the ‘biologically relevant’ entity for
nanoparticles is an important and largely unsolved one, as a recent
Editorial in Nature Nanotechnology describes (Nature Nanotechnology
Editorial, 2011). Nanoparticles and other nanomaterial rarely interact
with biology in the pristine state. In blood or other biological fluids
they attract a ‘corona’ of proteins (Bhunia et al., 2013; Docter et al.,
2015a; Docter et al., 2015b) and, in the environment, of other macro-
molecules such as humic substances. This coating depends on both the
nature of the nanoparticle surface chemistry and its size and shape,
but also on the biological environment in which the nanoparticle re-
sides. The corona is dynamic so changes over time, as more abundant
proteins with lower affinity are exchanged for low abundance proteins
with higher affinity. The corona composition can change as the nano-
particle passes from one biological compartment to another. This is
the entity that interacts with cells in the first instance. This very com-
plex area has been investigated experimentally by the Dawson group
in Dublin, amongst others (Mahmoudi et al., 2011; Monopoli et al.,
2012). Beddoes has very recently reviewed physicochemical and com-
putational studies aimed at understanding how nanoparticle properties
influence their interactions with lipid bilayers and how this affects
cellular uptake (Beddoes et al., 2015).

Given the complexity of the nanoparticle-corona entity, computa-
tional approaches have mainly involved molecular dynamics (MD) with
coarse-grained force fields, or machine learning models of nanoparticles
with specific surface chemistries that are easier to model. The use of MD
for simulating nanoparticle interactions has developed strongly in the
past two years. De Leo et al. used molecular dynamics methods to study
the interaction monoclonal antibodies with nanoparticles (De Leo et al.,
2013). Gu and Lin, and more recently, Ding and Ma reviewed the use of
Monte Carlo, molecular dynamics, and dissipative particle dynamics sim-
ulation tomodel the uptake of pristine nanoparticleswith biomembranes
(Ding and Ma, 2015) and earlier work on this topic was summarized by
Qu et al. (Qu et al., 2013). Dobay et al. reported a novel stochastic pi calcu-
lus method to model nanoparticle cellular uptake (Dobay et al., 2012).
Wang et al. studied the interaction dynamics of silver nanoparticles
with proteins using discrete MD (Wang et al., 2015). Very recently,
Tevanti et al. have begun using MD methods to understand competitive
binding of proteins to nanoparticles (Tavanti et al., 2015a; Tavanti et al.,
2015b) and Todorova et al. have used MD calculations to investigate the
important issue ofwhether nanoparticles penetrating the brain (and else-
where) can trigger the autocatalytic self-assembly of amyloidogenic pep-
tides (Todorova et al., 2013). Zhang et al. have tackled the very complex
area of nanoparticle aggregation using computational models (Zhang,

Fig. 1. Relative distribution of products according to how much is known about
nanomaterials content (reproduced from Vance et al., 2015) under Creative Commons
Licence).
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