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Nowadays, nanomaterials are often considered a scientific hit. However, despite the immense advantages of
nanomaterials, there are studies, which have shown that these materials can also harmfully impact both
human health and the environment. A preliminary evaluation of the hazards related to nanomaterials can be per-
formed using predictive models. The aim of the present study is building up a single QSAR model for predicting
cytotoxicity of metal oxide nanoparticles on (i) Escherichia coli (E. coli) and (ii) human keratinocyte cell line
(HaCaT) based on the representation of the available eclectic data, encoded into quasi-SMILES. Quasi-SMILES
are an analog and an attractive alternative of traditional simplifiedmolecular input-line entry systems (SMILES).
In contrast to traditional SMILES quasi-SMILES are a tool to represent not only molecular structures, but also dif-
ferent conditions, such as physicochemical properties and experimental conditions. The statistical quality of the
models is average correlation coefficient (r2) and root mean squared error (RMSE) for the training set 0.79 and
0.216; the average r2 and RMSE for validation set are 0.90 and 0.247, respectively.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Human exposure to NPs has been in existence for many years. It in-
volves public and occupational health exposure to ultrafine particulate
air pollution. A broader source of exposure is related to nanoparticles
which are abundant in nature, as they are produced in many natural
processes, including photochemical reactions, volcanic eruptions, forest
fires, and simple erosion, and by plants and animals (Buzea et al., 2007).

In more recent years, due to the rapid expansion of nanotechnology,
environmental and human exposure to engineered nanoparticles has
also become unavoidable (Ray et al., 2009).

For this reason, the need to gain knowledge about safety and poten-
tial hazards of nanoparticles is dramatically increasing.Within this con-
text, nanotoxicology has become an emerging discipline. However,
while thenumber of nanoparticle types and their applications continues
to increase, studies to characterize their effects after exposure and to ad-
dress their potential toxicity are few in comparison. In themedical field
in particular, nanoparticles are being utilized in diagnostic and thera-
peutic tools to better understand, detect, and treat human diseases. Ex-
posure to nanoparticles for medical purposes involves intentional
contact and control; therefore, understanding the properties of

nanoparticles and their effect on the body is crucial before clinical use
can occur. The first step towards understanding how an agent will
react in the body often involves cell-culture studies. Compared to ani-
mal studies, cellular testing is less ethically ambiguous, is easier to con-
trol and reproduce, and is less expensive (Lewinski et al., 2008).

Building up predictive models for endpoints related to nanomaterials
is an important task of modern natural sciences (Singh and Gupta, 2014).
Likely, the traditional quantitative structure — property/activity relation-
ships (QSPRs/QSARs) (Melagraki and Afantitis, 2013; Scotti et al., 2014;
Toropov et al., 2014; Kleandrova et al., 2015; Speck-Planche and Cordeiro,
2015; Duchowicz et al., 2015; Ibezimet al., 2012; Veselinović et al., 2015a;
Veselinović et al., 2015b) based on the molecular structure is not able to
solve this task.

The problem with nanomaterials is that a chemical structure is not
sufficient to describe them so that a range of other unique properties
needs to be considered, including particle size, shape and surface
(Toropov et al., 2012).

A model for endpoints related to nanomaterials can be organized in
the following form: themeasured calculated endpoint is amathematical
function of all available eclectic information, whichmay be (i) chemical
structure, (ii) atom compositions, (iii) conditions of synthesis/prepara-
tion of the nanomaterial, (iv) the features of nanomaterials related to
their manufacture. This list can be easily extended (size, porosity, sym-
metry, electromechanical properties, etc.). To define a predictive model
for an endpoint related to nanomaterials the traditional paradigm for
QSAR modeling, ‘Endpoint = F (molecular structure)’, can be replaced
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by ‘Endpoint=F (eclectic information)’ (Toropov and Toropova, 2015a;
Manganelli et al., 2016; Toropov and Toropova, 2015b; Toropov et al.,
2015; Toropova and Toropov, 2015a).

The aim of the present work is an attempt to build up united predic-
tive model for two endpoints: (i) cytotoxicity to Escherichia coli and (ii)
human keratinocyte cell line (HaCaT) for metal nanoparticles using op-
timal descriptors based on quasi-SMILES. Quasi-SMILES are a modifica-
tion of the traditional simplified molecular input-line entry systems
(SMILES) (Weininger, 1988; Weininger et al., 1989; Weininger, 1990)
representing eclectic data using a string of characters, encoding particu-
lar conditions, not of themolecular structure. In fact, the aimof the pres-
ent work can be also defined as an attempt to answer question: “How
one should organize databases related to nanomaterials in order to ex-
tract from these databases satisfactory prediction of the behavior for
nanomaterials, which were not examined in experiment?”

2. Method

2.1. Data

The endpoint considered for the QSAR analysis was cytotoxicity of
metal oxide nanoparticle on E. coli (E. coli) (Puzyn et al., 2011) and
human keratinocyte cell line (HaCaT) (Gajewicz et al., 2015), expressed
as the negative logarithm of half maximal effective concentration
(pEC50). pEC50 data (mol/L) were taken from the literature (see
Table 1). Fig. 1 shows the toxicity data for nano-sized metal oxides
against E. coli andHaCaT cells: pEC50 values onHaCaT are higher in com-
parison to those obtained from E. coli. This trend of toxicity is reversed
only for In2O3, SnO2, and TiO2, which are more toxic to HaCaT than to
E. coli (Kar et al., 2016).

The total set of available data has been split (three times) into the
training (n = 22), calibration (n = 5), and validation (n = 5) sets.

These splits are built up according to principles: (i) these splits are ran-
dom; (ii) the ranges of endpoints are similar for each sub-set (i.e. for the
training, calibration, and validation set); and (iii) these splits are differ-
ent. It is possible to notice that there is a good balance of cytotoxicity
data between the two sets of values. Furthermore, the cytotoxicity
ranges are also quite similar going from 1.76 to 3.32 in the case of line
cell line and in the case of E. coli from 1.74 to 3.45. These values are
given as pEC50 where EC50 is the cytotoxicity effect observed the dose
which produces effect on 50% of the cells.

In fact these endpoints are amathematical function of the same con-
ditions (same structures of nano-oxides) and two additional codes (%11
and %12) give possibility to attempt to build up united model for these
endpoints. The similar approach was used in work (Toropova and
Toropov, 2015b) for united model of mutagenicity for fullerene and
multi-walled carbon nanotubes (MWCNTs) under different conditions.

2.2. Optimal descriptor

Optimal descriptors also called ‘quasi-SMILES’, of nanoQSAR analysis
were calculated with CORAL software (http://www.insilico.eu/coral).
These were built and optimized starting from the coding of an experi-
mental condition (in vitro test): HaCaT and E. coli were encoded as
“%11” and “%12” respectively. These codes were combined with the tra-
ditional SMILES of nano-oxides (see Table 1). The 32 resulting combined
systems (traditional SMILES-in vitro test) were randomly split into
training, calibration and validation sets, with similar distribution of end-
point values.

Optimal descriptors were calculated as follows:

DCW T;Nð Þ ¼
X

CW Skð Þ ð1Þ

where CW(Sk) are the correlation weights for each fragment Sk
contained in the quasi-SMILES (Table 2).

The correlationweights are calculated using theMonte Carlo optimi-
zation method (Veselinović et al., 2015a; Veselinović et al., 2015b;
Toropov et al., 2012; Toropov and Toropova, 2015a; Manganelli et al.,
2016; Toropov and Toropova, 2015b; Toropov et al., 2015; Toropova
and Toropov, 2015a). The optimization process makes use of two pa-
rameters: (i) the threshold (T),which is a tool for classifying codes as ei-
ther rare (and thus likely less reliable features, probably introducing
noise into the model) or not rare features, which are used by the
model and labeled as active; and (ii) the number of epochs (N), which
is the number of cycles (sequence of modifications of correlation
weights for all codes involved in model development) for the optimiza-
tion (Toropov and Toropova, 2015a; Manganelli et al., 2016; Toropov
and Toropova, 2015b; Toropov et al., 2015). The target function of the
optimization procedure is the correlation coefficient between cytotoxic-
ity and descriptors calculated with Eq. 1 for the training set. However,
the process should be stopped when the correlation coefficient for the
calibration set reach maximum. If the process will be continued after
this maximum, the model most probably will give the overtraining
(i.e. excellent statistical quality for the training set, but poor quality
for the calibration and for the validation set).

Thus, themodel should be optimized using condition the T= T* and
N = N* which give the maximum of the correlation coefficient for the
calibration set. These T* and N* should be defined from computational
calculations with T from range {T1, T2, …, Tn} and N from range {1, 2,
…, N}. Having the correlation weights obtained by described manner,
one can calculate by using Eq. 1 the optimal descriptor for any system
of eclectic conditions and by utilizing the systems of the training set
build up a model:

pEC50 ¼ C0þC1 � DCW T�;N�ð Þ ð2Þ

The model should be checked up with the calibration set and if the
statistical quality is satisfactory, then the obtained model should have

Table 1
Numerical data on the toxicity to Escherichia coli and human keratinocyte cell line
(HaCaT).

No. Nano-oxide Traditional SMILES Additional codes:
HaCaT = %11
E. coli = %12

pEC50 in molar
scale

1. Al2O3 O[Al]O[Al]O %11 1.85
2. Bi2O3 O[Bi]O[Bi]O %11 2.5
3. CoO [Co]O %11 2.83
4. Cr2O3 O[Cr]O[Cr]O %11 2.3
5. Fe2O3 O[Fe]O[Fe]O %11 2.05
6. In2O3 O[In]O[In]O %11 2.92
7. La2O3 O[La]O[La]O %11 2.87
8. NiO [Ni]O %11 2.49
9. Sb2O3 O[Sb]O[Sb]O %11 2.31
10. SiO2 O[Si]O %11 2.12
11. SnO2 O[Sn]O %11 2.67
12. TiO2 O[Ti]O %11 1.76
13. V2O3 O[V]O[V]O %11 2.24
14. Y2O3 O[Y]O[Y]O %11 2.21
15. ZnO O[Zn] %11 3.32
16. ZrO2 O[Zr]O %11 2.02
17. Al2O3 O[Al]O[Al]O %12 2.49
18. Bi2O3 O[Bi]O[Bi]O %12 2.82
19. CoO [Co]O %12 3.51
20. Cr2O3 O[Cr]O[Cr]O %12 2.51
21. Fe2O3 O[Fe]O[Fe]O %12 2.29
22. In2O3 O[In]O[In]O %12 2.81
23. La2O3 O[La]O[La]O %12 2.87
24. NiO [Ni]O %12 3.45
25. Sb2O3 O[Sb]O[Sb]O %12 2.64
26. SiO2 O[Si]O %12 2.2
27. SnO2 O[Sn]O %12 2.01
28. TiO2 O[Ti]O %12 1.74
29. V2O3 O[V]O[V]O %12 3.14
30. Y2O3 O[Y]O[Y]O %12 2.87
31. ZnO O[Zn] %12 3.45
32. ZrO2 O[Zr]O %12 2.15
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