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a  b  s  t  r  a  c  t

Strategic  decision  making  at the  building  level  is  gaining  importance  in the context  of  a  more  and  more
deregulated  energy  market.  The  increase  of the  set  of  available  options  regarding  distributed  and  renew-
able  energy  technologies  leads  to a complex  decision  process.  Importantly,  such  decision  making  process
is  affected  by  uncertainties  and therefore  stochastic  models  are  needed.  In this  paper,  a comprehensive
deterministic  strategic  optimization  model  for energy  systems  planning  at the building  level is  extended
to  a  stochastic  optimization  framework,  thereby  allowing  the  decision  maker  to  manage  risks  in addition
to considering  the  variability  of  the uncertain  parameters.  A numerical  example  shows  the  importance
of  taking  into  account  uncertainty  and risk  in  this  kind  of  problems.
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1. Introduction

1.1. Overview

Energy systems optimization is increasing its importance due
to deregulations in energy markets and the setting of targets such
as the European Union (EU) 20-20-20. In turn, those targets usu-
ally embody policies that motivate new regulations aimed at the
achievement of such objectives. For example, emissions trading
schemes, renewable-energy and/or efficient generators subsidies,
or efficiency requirements such as buildings labeling, among oth-
ers. Usually, those global changes must be tackled at a regional
or local scale. Users’ comfort, security, and energy availability
are challenges for decision makers at the building level, who
have to deal with limited budgets in addition to the regulations
regardless their global, regional or local scope. Furthermore, new
tariffs alternatives, as well as new technologies and refurbish-
ment options are available and continuously evolving, widening
the range of choices for decision makers.

In this paper, a Stochastic Optimization (STO) model for strate-
gic decision making at the building level is presented. The STO
framework allows, on the one hand, to cope with uncertainties in
contrast with deterministic models based on point estimates of the
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parameters; on the other hand, the inclusion of risk measures in the
model provides the decision maker with a tool to hedge against pos-
sible extreme scenarios. The model developed in this paper extends
the deterministic model in [1] to a STO problem that deals with
uncertainty, in order to overcome the drawbacks of a deterministic
approach using average values for stochastic parameters, see [2].
The multi-stage stochastic model eventually adopted is explained
in depth in Section 2.

Adding uncertainty to the model and optimizing the total
expected cost is a way to reduce risk, mainly making the model
robust (feasible) for a wide range of scenarios. However, models
in which risk is not specifically modeled are risk neutral.  Ignor-
ing risk management might result on an optimal average value for
the objective function, but providing very bad outcomes for some
extreme scenarios. In the case at hand, the optimal investment plan
leading to the minimum expected cost could be poor for the actual
scenario that eventually occurs. To overcome such drawback, in
Section 3 a risk measure is added to the formulation.

To avoid repetition with the previously published work, we  do
not give details regarding energy technologies modeling. Instead,
the complete model can be found in Appendix A. The description
of the deterministic model equations can be found in [1] whilst the
stochastic-specific aspects are in Section 2.

1.2. Background

The model has been developed within the Energy Efficiency and
Risk Management in Public Buildings (EnRiMa) research project [3].
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The result of the project is a Decision Support System (DSS) for
building managers and operators, which helps making decisions
for energy efficient buildings. This DSS deals with both strategic
and operational decisions. Thus, in addition to the strategic model
presented in this paper, an operational model was also developed,
see [4,5]. The strategic model has been designed in order to make
strategic decisions concerning which technologies to install and/or
decommission in the long term, that is, the energy technologies
portfolio planning. Besides technologies, this planning includes
contract selection.

STO has been extensively used in energy markets modeling,
mainly from the utilities perspective. We  can find the use of STO and
risk measures at the generation level in [6,7]. In [8], uncertainties
and their impact are captured by scenario trees to optimize building
operation. Further techniques such as simulation and enumerative
algorithms can be found in [9,10]. The use of STO at the building
level for strategic decision making is a novelty, hence the model
and approach presented in this paper cover a gap in the sector.

Regarding risk measures, the simplest one that can be used is
the variance. A mean-variance model that minimizes the risk (vari-
ance) requiring a given average objective was proposed in [11]. It
can be found in the literature detailed descriptions and compar-
isons between risk measures, see for example [12,13]. However,
the minimization of Conditional Value at Risk (CVaR) method [14]
has proved to be a breakthrough risk measure since its publication.
It has desirable properties [15] to be a coherent risk measure. More
recent advances on risk measures include stochastic dominance,
see for example [16–19]. Risk management is tackled in [20], focus-
ing on Value at Risk (VaR) for investment analysis but ignoring the
building-specific performance. In this paper, the CVaR risk measure
is extended beyond the typical economic use, which is a novelty in
the field.

2. Modeling

2.1. Stochastic optimization framework

The starting point of the stochastic model is the deterministic
model in [1], which contains a complete set of features regarding
energy systems in a building, including both systems deployment
(strategic) and systems use (operational). Such deterministic mod-
els are usually extended to their stochastic version through the
deterministic equivalent linear program, i.e., (i) approximating the
probability distribution of stochastic parameters through a finite
set of scenarios; (ii) requiring constraints to be fulfilled for all
scenarios; (iii) optimizing the mathematical expectation of the
objective. In this section we provide details of this transforma-
tion including links to the deterministic model in [1] and the new
exhaustive formulation and nomenclature in Appendix A.

2.2. Scenario trees

The uncertainty structure is modeled by means of scenario trees.
Scenario trees are widely used in stochastic programming to dis-
cretize the huge, usually infinite, number of possible outcomes of
the random variables in a stochastic model. Thus, a scenario tree
gathers the most probable scenarios resulting from a combination
of all random variables. Several size-reduction techniques can be
used in order to make the problems computationally tractable, see
for example [21].

A scenario tree can be graphically represented as an acyclic
graph consisting of nodes and arcs where each node may  have one
or more children, and each node can only have one parent (except
for the root). The number of terminal nodes (leaves), which do
not have children, determines the number of scenarios considered.

Each scenario is a path from the root node to a leaf node. Nodes rep-
resent states of the system at a particular time, e.g., the beginning
of a year, where decisions are made. The root node corresponds to
the beginning of the planning horizon. Arcs represent the prece-
dence relationship between nodes with an associated probability
of occurrence. Therefore, in addition to the node identifier v, which
substitutes the index p in [1], the following information is required:
(i) The parent node of each node v, which is mapped by the expres-
sion Pa(v); (ii) the probability of each node, represented by the PRv

parameter; and (iii) the time period of each node, represented by
the PTv parameter.

Fig. 1 shows a simple scenario tree with all the symbols and
expressions used in the model. Circles represent nodes with the
node index v displayed inside. Nodes in the same column corre-
spond to the same time period, and each one has a probability
associated to its parent’s branching. For example, for node v = 8,
PTv = 1, Pa(v) = 1, and PRv is the probability of occurrence of the
second branch after node 1. The represented tree corresponds to a
three-stage stochastic problem, where new information arrives at
periods 1 and 4. The tree contains thirteen nodes which lead to six
scenarios. An illustrative, simplified example at the building level
could be: After first stage decisions, i.e., investments in efficient
technologies, at node v = 1 (PTv = 0), the stochastic parameters
energy cost and energy demand might evolve in two directions
in PTv ∈ {1, 2, 3}: (i) low demand and same cost (node v = 2); and
(ii) high demand and increase in cost (node v = 8). Such possibili-
ties having a given probability, say PR2 = PR8 = 0.5. In the fifth year,
i.e., PTv = 4, three new possibilities are considered for each branch
above: (i) low demand and same cost; (ii) high demand and same
cost; (iii) high demand, increase in cost. Again, probabilities for each
possible outcome are to be considered.

Note that the stochastic model needs knowledge about uncer-
tainties, that is to say, the probability distribution of the stochastic
parameters. Using this knowledge, a DSS for STO needs an appro-
priate scenario generator in order to generate as many scenarios
as the optimization software is capable to solve. Scenario gener-
ation is out of the scope of this paper. Nevertheless, in Section
4 the scenario generator in the EnRiMa DSS has been used. The
strategy followed by this tool relies in the assumption that short-
term stochastic parameters vary over the long-term, but can be
modeled within each long-term period by means of profiles, using
a multi-horizon approach. This scenario generation approach can
be consulted in [22], along with discussions on tree sizes (stages,
branching, periods). In any case, the tree structure very much
depends on the problem at hand. A market-based possibility would
be branching after four and ten years, taking into account futures
for electricity and gas prices from the European Energy Exchange,1

which are available up to six years.
A two  stage generic model was initially proposed in [2]. How-

ever, instead of using the two-stage model with a by-scenario
representation of the uncertainty, a multi-stage approach was
eventually adopted within the EnRiMa project. Thus, uncertainty
is modeled through the use of scenario trees gathering the uncer-
tainty throughout the decision horizon. A by-node notation is
followed, which basically means that, in contrast to the determinis-
tic model presented in [1], a new time-related index representing
the node is used instead of the one for long-term periods, e.g., years,
as remarked above. This index applies: (i) to parameter and variable
symbols; (ii) to constraints, so that they are fulfilled for all the nodes
and thereby making the model robust for all scenarios; and (iii)
to the objective function, in order to compute the expected value.
Thus, Eqs. (A.1)–(A.28) represent the stochastic problem complete
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