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a  b  s  t  r  a  c  t

This  paper  presents  an  occupancy-predicting  control  algorithm  for heating,  ventilation,  and  air con-
ditioning  (HVAC)  systems  in  buildings.  It incorporates  the  building’s  thermal  properties,  local  weather
predictions,  and  a  self-tuning  stochastic  occupancy  model  to  reduce  energy  consumption  while  maintain-
ing occupant  comfort.  Contrasting  with  existing  approaches,  the  occupancy  model  requires  no manual
training  and adapts  to changes  in occupancy  patterns  during  operation.  A  prediction-weighted  cost
function  provides  conditioning  of  thermal  zones  before  occupancy  begins  and  reduces  system  output
before  occupancy  ends.  Simulation  results  with  real-world  occupancy  data  demonstrate  the  algorithm’s
effectiveness.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The long-term increase in energy prices has driven greater inter-
est in demand-based HVAC control. Fixed temperature setpoint
schedules and occupancy-triggered operation are commonly used
to trim energy consumption, but these approaches have signif-
icant drawbacks. First, fixed schedules become outdated; when
occupancy patterns change, early or late occupants are left uncom-
fortable, or the space is conditioned prematurely or for too long.
Second, thermal lag limits response speed and thus precludes
aggressive temperature set-back. Addressing both schedule inac-
curacy and thermal lag requires a stochastic occupancy model and
a control scheme that can use it effectively.

Considerable research effort has been directed toward occu-
pancy detection and modeling. Work on detection has focused
on boosting accuracy through sensor fusion using probabilistic,
neural, or utility networks [1–4]. Agent-based models have been
used to predict movement within buildings [5,6], as have Markov
chains [7–9]. Erickson and Dong, for example, considered rooms
to be Markov states and movements among them to be tran-
sitions in order to predict persons’ behavior, while Dong and
Lam [10] used a semi-Markov model to merge multiple sensor
streams into an occupant count estimate. The simpler Page model
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considered Boolean occupancy (occupied or vacant) under a time-
heterogeneous Markov chain to generate realistic simulation input
data, rather than for on-line forecasting [8].

With the exception of the Page model, the above efforts have
found use in heuristic [11–13] or model predictive control (MPC)
schemes [10,13,14], but they face barriers to widespread usage.
Most notably, where authors have used MPC, they have also used
manually-generated thermal models [10,13,14] even though model
creation is tedious and time-consuming and therefore expensive.
Eager to demonstrate excellent performance, researchers have
favored systems with complex topologies and numerous adjust-
ments that yield “one-off” engineering efforts without a clear
path to large-scale adoption. The system outlined in [10], for
instance, uses CO2, sound, and light sensors that require care-
fully set detection thresholds for each room, plus an on-board
weather forecasting algorithm in lieu of forecasts already available.
We aim, instead, to make occupancy-predicting control accessible
to a broader audience by presenting a simple but effective algo-
rithm with a straightforward implementation. For example, we
use an automated BIM translation facility outlined in a previous
paper [15], and the core algorithm is industry-standard MPC with
occupancy weighting in the cost function. Each of the very few
adjustments serves a clearly defined purpose, and we have outlined
each component’s operation with the practitioner in mind.

Second, recent research has paid little attention to the commis-
sioning and maintenance of occupancy prediction algorithms;
model training, if mentioned at all, has been assumed to be done
all at one time by someone skilled in the art [8,10,11]. Although

http://dx.doi.org/10.1016/j.enbuild.2014.07.051
0378-7788/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.enbuild.2014.07.051
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2014.07.051&domain=pdf
mailto:jrd288@cornell.edu
mailto:bmh78@cornell.edu
dx.doi.org/10.1016/j.enbuild.2014.07.051


676 J.R. Dobbs, B.M. Hencey / Energy and Buildings 82 (2014) 675–684

State 
Observer

Temperature

Occupancy

Occupancy 
Model

Prediction

HVAC

BIM Weather

Zone

Bayesian 
Training

MPC Synthesis

Thermal 
Network

Fig. 1. Proposed system architecture. For this study, the building model has been
translated automatically from CAD data into a linear, time-invariant network that
encompasses the dominant thermal processes. (Model translation may  also be per-
formed manually.)

most training algorithms could be extended to work on-line, ongo-
ing maintenance remains a source of long-term cost neglected by
the literature. An occupancy model invariably becomes out-of-date
unless it is periodically retrained or can incrementally refine itself
with new observations. Our work uses on-line Bayesian inference
for stable performance without ongoing manual effort.

The paper progresses as follows. First, we outline the prob-
lem formulation. Second, we describe the stochastic occupancy
model and its on-line training algorithm. Third, we  discuss its
integration with model predictive control. Finally, we present sim-
ulation results using real-world occupancy data and compare our
method’s performance to a correctly set scheduled controller and
to an occupancy-triggered controller. Throughout the discussion,
the control scenario is kept deliberately simple to emphasize the
contribution of occupancy learning and its use with MPC.1

2. Problem statement

We  wish to minimize the total energy usage of a building heating
(or cooling) system while maintaining occupant comfort. Versus
conventional occupancy-triggered or scheduled control, we aim to

• boost comfort by conditioning the space before occupants arrive,
• limit energy consumption by not running the system too early,

and
• exploit stored thermal energy by reducing power before occu-

pants leave.

Our approach is based on MPC  but uses a cost function weighted
by occupancy predictions from a self-training stochastic model
(Fig. 1). At each step, the system measures how much of the pre-
vious hour the space was occupied, and the expected occupancy is
used to find the best sequence of N future heat inputs to the thermal
zone that minimizes the expected cost. The optimization is

min
uk ···uk+N−1

N−1∑
j=0

E[g(xk+j, uk+j, �, �k+j)]

subject to
xi+1 = Axi + Buui + BwE[wi] ∀i ∈ Z

+

0 ≤ u ≤ umax

(1)

1 See [13] for a comparison of MPC  and heuristic control for a more complex HVAC
system.
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Fig. 2. Process flow during operation.

where

• k ∈ Z
+ is the current time step, and j ∈ [0, N − 1] is the optimiza-

tion index over the horizon;
• A ∈ R

n×n describes the building’s thermal dynamics;
• x ∈ R

n×1 contains the building’s thermal state;
• uk. . .k+N−1 contains the controller output, constrained within the

system’s capacity umax;
• Bu is a vector that connects the heat input u to the zone air volume;
• wk is the current weather observation, and wk+1...k+N−1 contain

an up-to-date weather prediction;
• Bw is a vector that connects the weather conditions to the building

envelope;
• � is the temperature setpoint, which is constant for this study

(but can be varied in practice);
• �k is the latest occupancy measurement, and �k+1. . .k+N−1 are the

predicted occupancies; and
• g(x, u, �, �) is a cost function that penalizes total energy consump-

tion and penalizes discomfort based on the occupancy �.

The expectation operator E[g] in Eq. (1) reflects that future val-
ues of g require predictions of occupancy and of the weather. The
optimization yields a sequence of N power commands to the HVAC
system, where positive values are heat and negative are cooling; the
first command uk is applied, and the rest are discarded. The previ-
ous and current occupancy observations are then used to train the
occupancy model, and the entire process repeats the next time step
(Fig. 2).

Two assumptions are made in this presentation. First, we  treat
the weather forecast as accurate so that we  can later omit the
expectation operator from w. Second, we  use a very simple cost
function with constant efficiency and a single linear actuator.
These assumptions improve clarity but are not required in practice.
Where available, weather uncertainty data can be rolled into the
cost function in order to improve robustness [14]. Multiple actua-
tors (e.g. radiant and forced air with vastly different response times)
or nonlinear actuation (e.g. variable air volume damper position)
can be pulled into the dynamical model and the cost function with-
out undermining the basic approach [13,14,16]. Finally, the energy
penalty gain can be varied over time to reflect, for example, chang-
ing system efficiency or electricity cost.

3. Building thermal model

Thermal model accuracy influences controller performance, so
we need a thermal model that closely approximates the dominant
dynamics. Here, we outline how the state-space building model is
generated, and we  validate it against EnergyPlus simulation results.
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