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a b s t r a c t

Accurate analysis of thin-walled box beams meeting at a joint requires not only consideration of higher-
order deformation degrees (such as warping and distortion) but also exact matching conditions at the
joint. Especially when more than two box beams are connected at a joint, the deformation of the
beam-joint system is so complicated that no one-dimensional beam analysis has yet predicted its struc-
tural behavior correctly. Since a beam theory incorporating higher-order deformations is available, the
main difficulty is determining the exact matching conditions at the joint. In this paper, we derive the
exact matching conditions for five field variables—bending deflection, bending/torsional rotations, warp-
ing, and distortion—of multiply connected box beams under out-of-plane bending and torsional loads.
The derived relations are valid irrespective of the number of beams and angles. We introduced a new con-
cept called ‘‘edge resultants” besides conventional (sectional) resultants, and demonstrated its effective-
ness for exact derivation and physical interpretations of the derived equations. The accuracy and validity
of the proposed theory are checked by comparing the predicted results with those of shell finite element
analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Compared with the results of classical Euler and Timoshenko
beam theories (e.g., [1,2]), thin-walled box beams behave more
flexibly. This is because cross-sectional deformations not covered
by those classical theories are evident in the box beams. When
box beams meet at a joint, the magnitudes of cross-sectional defor-
mations near the joint are amplified, which causes the joint region
to exhibit significant flexibilities. For this reason, the behavior of
box beam systems that consist of box beam members and joints
differs markedly from the predictions of classical beam theories.
To overcome this overestimation of stiffness, one-dimensional
higher-order beam theories that include cross-sectional deforma-
tions as additional degrees of freedom have been developed [3–
10]. In higher-order beam theories, however, determining the
matching relations among all degrees of freedom at a joint is diffi-
cult because higher-order deformation degrees such as warping
and distortion do not produce non-zero resultants. Especially for
box beam systems subjected to out-of-plane bending and torsion,
distortion is complicatedly coupled with other degrees of freedom
at the joint. However, there has been no dedicated research to

investigate how they are coupled. In fact, no exact analysis method
based on higher-order beam theories is applicable to systems of
‘‘three” or more box beams connected at a joint, under out-of-
plane loads. Therefore, we propose the first exact analysis
approach for cases of three or more box beam-joint systems under
out-of-plane loads.

Previous studies have attempted to express the joint flexibilities
of box beam systems using one-dimensional beam theories. Initial
studies, based mainly on classical beam theories, introduced joint
models including rotational springs to account for those flexibili-
ties [11–14]. El-Sayed [11] proposed a joint model consisting of
torsional springs to represent the flexibilities observed under
out-of-plane loads, and Lee and Nikolaidis [12] proposed a model-
ing technique using springs and rigid sections to consider addi-
tional joint coupling effects. Nonlinear joint elements were
proposed in Refs. [13,14] to model the effect of flexible joint non-
linearity on structural response under cyclic and dynamic actions.
Meanwhile, Becker et al. [15] suggested an approach to evaluate
the stiffness of a joint from dynamic responses. Recently, joint con-
cept modeling approaches were proposed in Refs. [16,17] that
reduce the shell element-based detailed joint into a super element
through static or dynamic reduction techniques. However, joint
flexibilities vary considerably depending on both the number of
connected box beam members and the joint angles. Thus, it is
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difficult to develop a consistent joint model applicable to various
joints using classical beam theories.

A beam theory that considered the significant cross-sectional
deformations as additional degrees of freedom could determine
the flexibilities of thin-walled box beam members or systems
without employing artificial concepts. Vlasov [3] theoretically
defined the warping deformation under twisting moment as a sec-
torial coordinate, and established a beam theory for thin-walled
beams that includes warping as a higher-order deformation
degree. For stress analysis, buckling analysis, dynamic analysis,
etc., using advanced beam theories, several analytic or semi-
analytic methods have been proposed; e.g., one based on Saint
Venant’s theory [18,19], the variational asymptotic method [20–
22], Carrera’s unified formulation [23,24], and the GBT cross-
section analysis [25–27]. For thin-walled closed section beams
including box beams, Kim and Kim [6,28–31] developed a
higher-order beam theory that interprets their torsional behavior
correctly. In this regard, they recognized the importance of consid-
ering distortional deformations in addition to warping deforma-
tions and proposed a semi-analytic method to define those cross-
sectional modes. In recent years, higher-order beam models have
been developed to analyze the stress distribution or nonlinear
behavior of thin-walled box beam members. Genoese et al. [8,32]
proposed a mixed beammodel considering warping modes derived
from their Saint Venant theory-based approach and a mixed for-
mulation with independent descriptions of stress and displace-
ment fields. Ferradi and Cespedes [9,33] proposed a method that
calculated distortion modes by modal analysis of a cross-section
decomposed with beam elements and derived relevant warping
modes using their equilibrium scheme. Vieira et al. [10,34] derived
a generalized eigenvalue problem that defined uncoupled warping
modes under the assumption of in-plane rigid cross-sections and
suggested a higher-order beam model considering those warping
modes. Some extended results that model the nonlinear response
of steel-concrete composite members can be also found in Refs.
[35,36].

Establishment of higher-order beam theories including the
effects of cross-sectional deformations was followed by efforts to
theoretically express the joint flexibilities of thin-walled beam sys-
tems. Especially concerning thin-walled open section beams, many
definitions of the joint compatibility of degrees of freedom have
been proposed [37–43]. Vacharajittiphan and Trahair [37]
investigated the warping restraint/transmission at the joint of
two I-section members and found that distortion influenced the
warping transmission. Baigent and Hancock [38] determined the
equilibrium condition at the joint of two asymmetric section mem-
bers by transforming force terms on the centroid and the shear
center to the member origin axes and derived corresponding dis-
placement relations at the joint including warping coupling effects.
In addition, they proposed a modeling technique to consider the
effects of different joint types and eccentric restraint. Based on
the above research, Basaglia et al. [41] recently derived extended
displacement relations applicable to a joint of multiple open-
section members and determined the warping transmission for
various joint types. Considering additional displacement con-
straints at specific points of the joint, they established a General-
ized Beam Theory (GBT)-based approach that interprets various
buckling behavior of thin-walled open section beam systems [42].

The flexibility at a joint of thin-walled closed section members
is induced by distortional deformation. Thus, considering the
effects of distortion as well as warping on the joint flexibilities is
required. Especially for box beam systems under out-of-plane
loads, joint flexibilities are caused mainly by the coupling of
distortion with other degrees of freedom because the location of
the centroid is identical to that of the shear center. Therefore, effort
has focused on defining those effects of distortion so as to express

correctly the joint flexibilities of box beam systems under out-
of-plane loads [44–48]. Solving an optimization problem that min-
imizes differences between the displacements of two box beams
on their imaginary joint section, Jang et al. [44–46] determined dis-
placement matching conditions at a joint of two box beams. For the
same two box beam-joint systems, Choi et al. [47] theoretically
derived exact joint-matching conditions to capture joint behavior
comparable with that predicted by detailed shell analysis. The
methods (for two box beam-joint systems) proposed in Refs.
[44–47] may be used in more general cases; i.e., three or
more box beam-joint systems. However, the joint stiffness is
overestimated because the joint is excessively constrained and
higher-order deformations, such as warping and distortion, cannot
develop at the joint.

To develop a precise higher-order beam analysis method appli-
cable to three or more box beam-joint systems, a new approach to
theoretically derive joint-matching conditions is required. Espe-
cially when the joint is defined as a gathering point of box beam
members, as used in the Euler/Timoshenko beam and box beam
[44–47] theories, the exact matching conditions defined at that
point have not been determined. From the observation that two
adjacent box beam members always share one common edge near
the joint, Jang et al. [48] recently proposed joint-matching condi-
tions that satisfy three-dimensional displacement continuity
between those two members along the actual location of the com-
mon edge. Using those conditions, they analyzed three box beam-
joint systems under out-of-plane loads. Since the joint is described
as several scattered points, however, equilibriums of the resultant
forces or moments cannot be held exactly at the joint, which
results in errors in the analyses.

In this study, three or more box beam-joint systems under out-
of-plane bending and torsion are analyzed using a higher-order
beam theory. The unique contribution of this investigation is the
derivation of the exact matching relations among all field variables
of box beam members meeting at the joint. Fig. 1 shows a three or
more box beam-joint system. Only a portion of the system—such as
Beam i � 1, Beam i, and Beam i + 1 (i P 2)—is depicted, for conve-
nience. It is assumed that all box beams in Fig. 1 are on the same
plane, and that their width, height, and thickness are equal to b,
h, and t, respectively. To interpret the box beam-joint system
depicted in Fig. 1 using the higher-order beam theory, the connec-
tivity between box beams is modeled in Fig. 2. As with the classical
beam theories and Refs. [44–47], the point at which all box beams
converge is defined as the joint (strictly speaking, the joint refers to
the point at which the central axes of box beams meet). Shared
Side Edge i � 1 in Fig. 1, which is shared by Beam i � 1 and Beam
i (i P 2), is extended and represented in Fig. 2 by Edge Mi�1M

0
i�1

in Beam i � 1 and Edge NiN
0
i in Beam i. So Edge Mi�1M

0
i�1 and Edge

NiN
0
i are regarded in this study as being rigidly connected to each

other (by an imaginary rigid body). Therefore, although Edge
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Fig. 1. Three or more thin-walled box beam-joint systems (only a portion of the
system such as Beam i � 1, Beam i, and Beam i + 1 (iP 2), is depicted).
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