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a b s t r a c t

Multi-story buildings are usually instrumented at a limited number of floors. Consequently, the structural
response (e.g., acceleration, displacement) at the non-instrumented floors remains unknown and needs
to be estimated using the acceleration data recorded at the instrumented floors. The prevailing way to
estimate the unknown structural response is to interpolate the recorded data over the height of the
building. Other methods such as the Mode Shape Based Estimation (MSBE) and Timoshenko Beam
Based Estimation (TBBE) methods, on the other hand, use the mode shapes of bending, shear and
Timoshenko beam modeling to estimate the unknown structural response. The Factor Building at the
UCLA campus in Los Angeles, California, USA is utilized to test the performance of these methods, and
the results are compared with conventional interpolation methods (e.g., linear or cubic spline interpola-
tions). The results show clearly that both the MSBE and the TBBE methods provide a better estimation of
unknown structural response than both linear interpolation methods.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-story buildings are usually instrumented at a limited
number of floors, and consequently the unknown structural
response (e.g., acceleration, displacement) at non-instrumented
floors must be estimated using the acceleration data recorded at
instrumented floors. Many methods have been developed over
the years to calculate the structural response at non-
instrumented floor levels. The conventional way to calculate such
unknown structural response is to interpolate the recorded
structural response over the height of the building using the linear
and cubic polynomial (spline) interpolation techniques [14,15,7].
The cubic spline interpolation method prosed by Beatson [1] is
adopted in this work to estimate the motions at non-
instrumented floors. Both of the interpolation techniques, on the
other hand, require that a sensor must be installed both at the base
and the roof of the building, as well as at some intermediate floors,
in order to obtain an acceptable estimate of structural response at
non-instrumented floors. Kaya et al. [10] proposed a new
simplified, Mode Shape Based Estimation (MSBE) method, which
estimates the vibration time histories of non-instrumented floors
using the records at instrumented floors. This method calculates
the contribution of shear- and bending-beam modes to each mode
shape of the multi-story building. This paper presents the

Timoshenko Beam Based Estimation (TBBE) method, an alternate
method to estimate the unknown structural response using the
mode shapes of the Timoshenko Beam only. The differences in
the beam theory used in the derivation of each of these beammod-
els is discussed later. Timoshenko beam has been extensively used
in literature to simulate building motions [2], to predict the prop-
agation of waves in buildings [3], and in the performance of system
identification [6].

The response of the proposed TBBE method is tested, alongside
the response of the previously proposed MSBE method, and linear
and cubic polynomial interpolation methods, using data from two
earthquakes recorded at UCLA’s Doris and Louis Factor Building.
The performance of each of the four methods is compared and dis-
cussed together in the following sections.

2. Mode shapes of bending, shear, and Timoshenko beams

The most commonly used beam model, the Euler–Bernoulli
beam assumes that the bending effect is the single most important
factor in transversely vibrating beams, and considers in its formu-
lation the strain energy due to the bending and the kinetic energy
due to lateral displacements; however, it does not take into
account shear distortions. The shear beam model adds the effects
of shear distortions to the Euler–Bernoulli beam model. The
Timoshenko beam model builds on this and adds the effects of
shear distortions and the effect of rotation of the cross-section to
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the Euler–Bernoulli beam. The differential equations of motion of
the Euler–Bernoulli, shear and Timoshenko beams as well as the
details of the derivations of a general solution to the mode shapes
of a bending-beam, /bðxÞ, of a shear-beam, /sðxÞ, and of a
Timoshenko beam, /tðxÞ are given in Han et al. [8].

The first four normalized mode shapes of the inverted can-
tilever bending, shear, and Timoshenko beams are plotted in
Fig. 1. Clamped at one end and free at the other end, the inverted
cantilever beam used in this paper has a uniform rectangular cross
section with a unit length of 1 m, a shape (shear) factor of 0.40, a
Poisson’s ratio of 0.29, and a slenderness ratio of 6.92. There are,
for example, combinations of these properties for which the
calculated response of a beam using shear and Timoshenko beam
theory may be identical. This particular situation was carefully
avoided by selecting these properties; moreover, the response of
the Timoshenko beam using these properties is analogous to a
high-rise building [5].

Due to differences in boundary conditions and the additional
effects of shear distortions in the shear-beam model as well as
the rotation of the cross-section, all of the beam models result in
different mode shapes. It should be noted that both the curvature
and the amplitude of the mode shapes are different for all modes,
and that the local peaks of each mode shape along the length of the
beam for all of the beam models do not occur at the same location.

The MSBE method assumes that the mode shape of a building
can be estimated as a linear combination of the mode shapes of a
shear beam and a bending beam whereas the TBBE method uses
the mode shape of a Timoshenko beam only as shown in
Eqs. (1a) and (1b), respectively.

/j;k ¼ Cs;j � /s;j;k þ Cb;j � /b;j;k ð1aÞ

/j;k ¼ Ct;j � /t;j;k ð1bÞ
where /s;j;k, /b;j;k and /t;j;k are the amplitudes of the jth mode shapes
of a shear beam, bending beam, and Timoshenko beam, respec-
tively, at the kth floor; /j;k is the amplitude of the jth mode shape
of the building at the kth floor; Cs;j, Cb;j and Ct;j are the jth mode
unknown weighting coefficients of a shear-beam, bending beam,
and Timoshenko beam, respectively. The solution of the differential
equation in Han et al. [8] assumes that both the mass and the stiff-
ness of the shear, bending, and Timoshenko beams are uniformly
distributed; therefore, the MSBE and the TBBE methods should only
be applied to those multi-story buildings whose mass and stiffness
distribution are uniform or close to uniform along the height of the
building. The error in the estimation for the jth mode can be
expressed as the square sum of the differences over the instru-
mented floors between the calculated modal acceleration, €zj;kðtÞ,
and the estimated modal acceleration, €yj;kðtÞ.

ejðtÞ ¼
XNIF
k¼1

½€zj;kðtÞ � €yj;kðtÞ�2 ð2Þ

where ejðtÞ is the error function for the jth mode, NIF is the Number
of Instrumented Floors, and €yj;kðtÞ is the estimated time variation of
the jth mode’s relative acceleration at the kth floor. In order to cal-
culate the modal acceleration, €zj;kðtÞ, the modal frequencies of the
building can first be identified using the Fourier spectrum analysis
and second, the recorded accelerations at each instrumented floor
are narrow band-pass filtered around each modal frequency of the
building in order to calculate the modal accelerations [9]. The sum-
mation in the error function (2) is only over the instrumented
floors; therefore, the coefficients of Ct;j for Timoshenko beam can
be estimated by minimizing the error function (2) with respect to
the coefficient Ct;j as

@ejðtÞ
@Ct;j

¼ 0 ð3Þ

which will lead to (4a) and (4b)

@ejðtÞ
@Ct;j

¼
XNIF
k¼1

� 2/t;j;k � €zj;kðtÞ � €DjðtÞ þ 2Ct;j � /2
t;j;k � €D2

j ðtÞ ð4aÞ

XNIF
k¼1

/2
t;j;k

 !
� ðCt;j � €DjðtÞÞ ¼

XNIF
k¼1

/t;j;k � zj;kðtÞ ð4bÞ

where €DjðtÞ is the jth modal relative floor acceleration (also velocity
or displacement) of a multi-story building and is defined as
€DjðtÞ ¼ Cj � €qjðtÞ where Cj is the jth modal participation factor and
€qjðtÞ is the time-variations of the acceleration of the jth mode of a
single-degree-of-freedom system [4]. Eq. (3) can then be simplified
for each jth mode as

Mj �WjðtÞ ¼ ZjðtÞ ð5Þ
where Mj is a constant time-invariant matrix, and it is a function of
the jth mode shapes of a Timoshenko beam; WjðtÞ contains the
weighting factors for the contributions of the shear beam and the
bending beam to the jth modal acceleration at time t; and ZjðtÞ is
the input matrix containing the calculated modal responses at the
instrumented floors at time t. Eq. (5) has to be satisfied at every
time step, t. Note that the matrixMj is time-independent; therefore,
it needs to be calculated only once. However, the matrix ZjðtÞ is
time-dependent and must be calculated at every time step, t. The
jth modal acceleration at the kth floor, €yj;kðtÞ can then be calculated
by multiplying WjðtÞ by /t;j;k as

€yj;kðtÞ ¼ /t;j;k � ðCt;j � €DjðtÞÞ ð6Þ
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Fig. 1. The first four normalized mode shapes of the inverted bending, shear, and Timoshenko beams. Due to the differences in boundary conditions, all the beam models
result in different mode shapes: curvature, amplitude, local maximum along the length of the beam, and the shape of the modes.
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