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a b s t r a c t

The wide real life applications of circular plates under dynamic loading such as laminate saw blades and
accurate slitting narrow industrial cutters require special attention to smart structural design that opti-
mally handles the dynamic behavior of these configurations. The purpose of this paper is to investigate
the vibration regulation of a sandwich circular plate using a non-fragile robust control strategy. A new
dynamic modeling of the piezolaminated structure is proposed based on satisfying the Maxwell static
electricity equation and on assuring the full coupling effects of the piezoelectric layers on the host struc-
ture. The Eigen functions are chosen optimally such that the boundary conditions for the piezoelectric
sensor/actuator are satisfied without additional complexities. In order to reach to the desired perfor-
mance in vibration attenuation, a robust controller is designed by considering the uncertainties that exist
in the system matrices and controller itself. The proposed controller is obtained by solving a system of
linear matrix inequalities (LMIs) that are based on the Bounded Real Lemma (BRL). Simulations show that
the controller is capable of suppressing the vibration in existence of both the structured uncertainty in
the system matrices and the feedback controller gain.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The turn of mechanical design entails structures to become
smart and resilient with respect to environmental stimuli; so in
recent years, the light weighted plates have been widely used in
various engineering applications [1]. These requirements cause
the structure to be sensitive with respect to undesired mechanical
loading, which leads to vibration and the consequential problems
such as fatigue, instability, and performance reduction. Therefore,
vibration control has attracted many researchers in the fields of
structural vibration analysis, damage detection, and vibration/
noise control [2–4].

Piezoelectric sensors and actuators, due to their lightness and
capability of coupling structural stress with electrical charge are
extensively implemented in practical applications. In order to con-
trol the structural vibrations, piezo-patches can be easily bonded
on the vibrating structure [5]. Thus, the analysis of the coupled
piezoelectric structures have been keenly researched. Wang and
Rogers [6] developed a uniform strain model for a beam with sur-
face bonded and embedded piezoelectric actuator patches
accounting for the shear lag effects of the adhesive layer between

the piezoelectric actuator and the beam. However, they assumed
the distribution of electric potential in the thickness of the piezo-
layer to be uniform which is in contradiction with the Maxwell
electricity equation. As a part of the new formulation that is pro-
posed in this paper, the solution for the electric potential is devel-
oped so that it satisfies the Maxwell electricity equation.

In the field of structural design and vibration control, the use of
active techniques for control of the dynamical behavior of the
structure is the vital target especially since, for an optimal config-
uration, the additional masses of stiffeners or dampers should be
avoided. In addition, active techniques are more effective in the
cases where the system is time variant or the external disturbance
is time or frequency dependent [4]. Nevertheless, most of the
active methods are model-based and accordingly in the design pro-
cedure of the controller, a nominal model is required. Therefore, in
terms of the optimal performance of the control system, an effec-
tive dynamic modeling is one of the key points. As a result, in
recent years, extensive attention is paid for extracting the nominal
open loop dynamics of the active structures for control design pur-
poses such as finite element methods [7,8], finite difference
method [9], modal analysis [10], exact mathematical modeling
[11], experimental analysis [12], and system identification [13].
Conversely, in all of the mentioned modeling procedures, due to
the modeling errors, variation of material properties, component
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nonlinearities, and changing of the load environments, the system
description inevitably contains uncertainties of different nature
and levels [14,15]. These uncertainties can affect both the stability
and performance of the control system [16]. To accommodate such
possible degradation of stability and performance, methods such as
robust H1 controllers are often used [17]. In literature [17,18], the
uncertainties in the mass matrix are modeled in an additive form
which is an indirect and unnatural way to describe the structural
uncertainty. Moreover, such an approach may lead to uncertainties
that appear in the input and disturbance matrices which will then
complicate the controller design procedure and will result in con-
servative solutions. This issue is addressed carefully in this paper
by appropriate transformation of the dynamic equation of motion
in state space representation.

In all of the reviewed literature it is also assumed that the con-
troller can be realized exactly. However, in practice, many physical
limitations lead to the loss of precision in controller implementa-
tion. As an example, the effects of finite word length in any digital
systems, round-off errors in numerical arithmetic, and inherent
imprecision in analog devices may lead to losing the desired per-
formance. In other words, even though a robust controller is
designed, it may be sensitive to its own gain variations. Thus, spe-
cial attentions have been paid to the fragility of controllers [19–25]
in some abstract problems without practical realization.

This paper is mainly concerned with forced vibration analysis of
a simply supported piezo-elastic circular plate. A new consistent
formulation that satisfies the Maxwell static electricity equation
is presented so that the effect of the piezoelectric layer on the
dynamic characteristics of the coupled circular plate can be esti-
mated and the boundary conditions for the piezoelectric sensor
and actuator are satisfied. The presented modeling technique
makes it possible to establish numerical models for fast assess-
ment of disturbance rejection control (DRC). Two aspects of the
vibration control are considered; One is the robust H1 DRC for
structural system with parametric uncertainties and second is
the robustness of the closed-loop system with respect to controller
gain variations due to the implementation and numerical imper-
fections. The non-fragile H1 state feedback controller is considered
to deal with additive controller gain variations with an optimal
selection of the admissible uncertainties. The results for controller
design that are developed in this paper are given in terms of the
feasibility of some LMIs which can be solved using standard
numerical software such as MATLAB/Scilab. The rest of the paper
is organized as follows: Section 2 formulates the dynamic equation
of motion for the piezolaminated circular plate in order to reach to
a state space model of the smart structure with associated uncer-
tain terms. Then, the robust non-fragile control design procedure
is presented in Section 3. The detailed numerical implementation
and performance investigation of the designed controller on the
smart system together with validation/verification of the mathe-
matical model are carried out in Section 4. Finally, the conclusion
and final remarks are made.

2. Formulation

The geometry of the circular plate with two piezoelectric layers
mounted on its surfaces is shown in Fig. 1. For wave propagation in
the structures with ratio of radius to the thickness more than ten,
the displacement field can be written as [26]

uz ¼ uz r; h; tð Þ ¼ w r; h; tð Þ;
ur ¼ ur r; h; tð Þ ¼ �z

@w
@r

;

uh ¼ uh r; h; tð Þ ¼ � z
r
@w
@h

;

ð1Þ

where uz; ur , and uh are the displacements in the transverse z-
direction, radial r-direction, and tangential h-direction of the plate,
respectively.

The poling direction of the piezoelectric material is assumed to
be in transverse direction. The strain tensor (eÞ in the host and
piezoelectric layers in r- and h-directions can be calculated in a
similar manner as Wang et al. [26] with respect to the shear com-
ponents. Then, following the stress–strain relations of isotropic
host domain with E and m being the Young’s modulus and the pla-
nar Poissons’s ratio of the host material, the relation between dis-
placement and stress fields is obtained. Similarly, the stress
components in the piezoelectric medium can be written as

r2
rr ¼ CE

11err þ CE
12ehh � �e31Ez;

r2
hh ¼ CE

12err þ CE
11ehh � �e31Ez;

s2rh ¼ CE
11 � CE

12

� �
erh:

ð2Þ

In Eq. (2), the superscripts 1 and 2 denote the variables in the elastic
and the piezoelectric layers, respectively. CE

11, C
E
12, and �e31 are the

transformed reduced material constants of the piezoelectric layer
(Appendix A), and are given as

CE
11 ¼ CE

11 �
CE
13

� �2
CE
33

; CE
12 ¼ CE

12 �
CE
13

� �2
CE
33

; �eE31 ¼ e31 � CE
13e33
CE
33

;

ð3Þ

where CE
ij; i; j ¼ 1;2;3 are the elastic modulus of the piezoelectric

material which are measured at constant electric field and e31 is
the piezoelectric constant. The sensor and actuator layers are elec-
troded on both sides to activate the electromechanical coupling.
When an external voltage V r; h; tð Þ is applied, the electric potential
distribution on the surface of the electrode remains constant. The
electric potential U on the mid-surface of the piezoelectric layers
is written as

U r; h; z; tð Þ ¼ 1

h3
1

z� h� h1ð Þ z2 � h2
� �

u r; h; tð Þ

þ 1

h3
1

zþ hþ h1ð Þ z2 � h2
� �

V r; h; tð Þ: ð4Þ

The electrical potential in the z-direction (Eq. (4)) is selected such
that, the electric boundary conditions for the piezoelectric actuator
and sensor layers are satisfied with respect to the conditions pre-
sented by Ray et al. [27] without additional modeling complexity.
In this equation z is measured from the mid-plane of the plate in
the global z-direction and h1 is the thickness of the piezoelectric

Fig. 1. Geometry of the problem.
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