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a  b  s  t  r  a  c  t

This work  proposes  a novel,  generalized  model  for  bacterial  disinfection  formulated  in  light  of  a stochastic
paradigm.  The  model’s  formulation  is  based  on  an  intensity  of transition  that  is proportional  to the
product  of  general  power  functions  of  the bacteria’s  number  concentration  and  time;  thus,  the  generalized
stochastic  model  embodies  the  results  obtained  from  our  earlier  models.  The  proposed  model  gives rise
to linear  and  non-linear  cases  of  the  master  equation  whose  solution  can be  obtained  analytically  as
well  as  numerically  via  Monte  Carlo  simulation.  Moreover,  the  generalized  stochastic  model  has  been
validated  with  a specific  instance  of bacterial  disinfection.  The  model’s  analytical  and  numerical  results
are  in  excellent  accord  among  themselves  as  well  as  with  those  obtained  from  our earlier  models;  in
addition,  the  model’s  results  tend  to describe  the  available  experimental  data  reasonably  well.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Mathematical models describing the behavior of bacterial popu-
lations during disinfection are ubiquitous in the available literature
[1–12]. More often than not, however, these models are formulated
in light of deterministic approaches that fail to quantify the inces-
sant fluctuations of the bacterial entities being eliminated, which
manifest themselves as constant variations in the experimental
observations. Moreover, such fluctuations, or variations, tend to be
magnified as the populations of bacteria become significantly small,
thereby rendering the determination of their number concentra-
tions uncertain or exceedingly difficult. Thus, proper quantification
of these fluctuations would be essential, especially in those areas of
science and industry concerned with the thorough elimination of
bacteria, e.g., food safety, water treatment, or sterilization of med-
ical equipment, whose societal impact cannot be underestimated.
In this regard, it is highly desirable that a process involving bac-
terial entities be quantified in light of probabilistic, or stochastic,
approaches, thereby incorporating the bacteria’s fluctuating nature
in the mathematical description of the variables characterizing the
process. In fact, numerous works offer unambiguous discourses on
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the need for the stochastic treatment of bacterial behavior, espe-
cially the bacteria’s population dynamics [13–16]. Naturally, many
of these works deal with the stochastic modeling of the inactiva-
tion, or disinfection, of bacterial populations [17–20]. Nevertheless,
stochastic models for bacterial disinfection based on rate expres-
sions of generalized nature have not been available hitherto; thus, it
would be plausible that the deployment of generalized rate expres-
sions could give rise to stochastic models with superior predictive
capability.

Consequently, this contribution introduces a stochastic model
for bacterial disinfection whose rate expression is defined as the
product of general power functions of the number concentration of
bacteria and time, which exhibit powers that can be rational, posi-
tive numbers. In the parlance of the stochastic approach deployed in
this work, the model’s rate expression is usually termed as intensity
of transition or intensity function [21,22]. Naturally, it is expected
that the generalized model’s performance in representing any spe-
cific set of experimental data could be enhanced in view of the
flexible nature of its intensity of transition. In addition, the mod-
els developed in our earlier works [21,23,24] are embodied by
the generalized stochastic model proposed herein: They presented
stochastic models for bacterial disinfection each based on an inten-
sity of transition given by the product of the first power of number
concentration of bacteria and a power function of time t whose
values were constrained to positive, integer numbers.
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The proposed model yields the master equation of the process
under consideration, which can be linear or non-linear depend-
ing on the power of the number concentration of bacteria, i.e., the
process’ random variable, in the intensity of transition. Both linear
and non-linear cases of the master equation can be solved ana-
lytically, thereby leading to the expressions for the mean, variance
(standard deviation), and coefficient of variation of the process’ ran-
dom variable. On one hand, the linear cases of the master equation
have been solved analytically via conventional mathematical tech-
niques, such as the probability-generating function [22,24]. On the
other hand, the difficulty in obtaining the analytical solution of the
non-linear cases of the master equation has been circumvented by
means of a rational approximation method, system-size expansion
[22]. In this method, the process’ random variable is expressed as
the sum of a macroscopic term representing the mean (average)
values of the process and a fluctuation term accounting for the
inherent variations (fluctuations) of the process about its mean.
Such a representation of the random variable gives rise to a set of
differential equations whose solution yields the expressions for the
process’ mean and variance (standard deviation) of the non-linear
cases of the master equation. For comparison, the master equation’s
linear and non-linear cases have also been solved numerically via
simulation by resorting to the Monte Carlo method, often regarded
as numerical experiments. The analytical and numerical results
obtained for a set of linear cases of the generalized stochastic model
have been validated by comparing them to those derived in our
earlier works [21,23,24]; the comparison indicates that they are
in excellent agreement. Moreover, the analytical and simulated
results for a number of non-linear cases of the generalized stochas-
tic model have been validated with the experimental observations
for a specific instance of bacterial disinfection [25]. In this regard,
a particular non-linear case appears to describe these experimen-
tal data more accurately than those linear cases of the generalized
stochastic model equivalent to the models elaborated in two of our
earlier works [23,24]. In light of these results, it is expected that the
generalized stochastic model could be applied to the mathemat-
ical description of a variety of instances of bacterial disinfection
performed at distinct ambient conditions and settings. Thus, the
generalized stochastic model would be a valuable quantitative tool
for the improvement of control strategies in areas of science and
industry pivotal for human society, including microbiological risk
assessment and water treatment.

2. Model formulation

The system under consideration can be modeled as a pure-death
process, a particular instance of the Markovian birth-and-death
process [22], as described in our earlier contributions [21,23,24].
The death event of this pure-death process is identified as the elim-
ination of a single bacterium by means of a disinfecting agent. In
addition, the process’ random variable, N(t), has been defined as the
number of live bacteria at time t, a realization of which is denoted
by n. The states of the process are all the possible numbers of live
bacteria and the state space is the collection of these numbers, {n0,
n0 − 1, . . .,  2, 1, 0}, where n0 is the number of live bacteria present
in the system at t = 0, i.e., N(0) = n0.

2.1. Master equation

The master equation for the pure-death process of concern is
obtained as [21–24]

d

dt
pn(t) = �n+1(t)pn+1(t) − �n(t)pn(t), n = n0, n0 − 1,...,  2, 1, 0

(1)

where pn(t) signifies the probability of n live bacteria being present
at time t. The master equation can be construed as a probability
balance around each state n, thereby giving rise to a system of
ODEs. The solution of this system yields the probability distribu-
tion, pn(t), from which the mean of the process as well as higher
moments about the mean, e.g., variance or standard deviation, can
be computed. For n = n0, we have �n0+1 = 0; thus, the above equa-
tion reduces to [21,24]

d

dt
pn0 (t) = −�n0pn0 (t) (2)

Herein, the intensity of transition (intensity of death), �n(t), in Eq.
(1) is proposed to be of the form

�n(t) = −dn
dt

= k˛,ˇn
˛tˇ (3)

where k
�,� is a positive constant given in the unit of

(number)−(�−1) × t−(�+1); the powers, � and �, are rational, positive
numbers, which can be other than integers. Naturally, the values of
k�,� as well as those of � and � depend on the nature of the bacterial
strain being eliminated, or inactivated, and the disinfecting agent
deployed. Substituting Eq. (3) for �n(t) into Eq. (1) and rearranging
the resulting expression give

d

dt
pn(t) =

[
(k˛,ˇt

ˇ)(n + 1)˛
]
pn+1(t) −

[
(k˛,ˇt

ˇ)n˛
]
pn(t),

n = n0, n0 − 1,...,  2, 1, 0 (4)

For n = n0, we obtain

d

dt
pn0 (t) = −

[
(k˛,ˇt

ˇ)n˛0
]
pn0 (t) (5)

Note that Eq. (4) constitutes a particular instance of the master
equation for a birth-and-death process as presented by van Kam-
pen [22], in which the coefficients accompanying n, (k�,�t�)’s are
explicit functions of time t. According to the accepted classification
in the literature [22], Eqs. (4) and (5) are linear in n, i.e., the realiza-
tion of random variable N(t), only when � = 1; all other � ≥ 0 will
render the same equations non-linear in n. The master equation,
Eqs. (4) and (5), can be solved analytically and/or numerically for
linear and non-linear cases as elaborated below.

3. Analytical solution

For the linear cases, (� = 1, � ≥ 0), the intensity of transition,
�n(t), is obtained from Eq. (3) as

�n(t) = −dn
dt

= k1,ˇnt
ˇ (6)

In light of this expression, Eqs. (4) and (5) can be rewritten,
respectively, as

d

dt
pn(t) =

[
(k1,ˇt

ˇ)(n + 1)
]
pn+1(t) −

[
(k1,ˇt

ˇ)n
]
pn(t),

n = n0 − 1,...,  2, 1, 0

and

d

dt
pn0 (t) = −

[
(k1,ˇt

ˇ)n0
]
pn0 (t), n = n0

In view of their linearity, these equations can be solved analyt-
ically by means of conventional mathematical techniques, e.g., the
probability-generating function [24]. By deploying the latter, the
mean, m(t), of N(t) is derived as (Appendix A)

m1,ˇ(t) = n0 exp

(
−k1,ˇ

tˇ+1

 ̌ + 1

)
(7)
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