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a b s t r a c t

The shear behavior of a single rock joint in limestone specimens, under a constant normal load (CNL), was
analyzed in this study. Test specimens with different asperity roughness were prepared and tested.
Goodman’s model of a rock joint’s shear behavior, under CNL, was modified to render a better represen-
tation of the data obtained. The model’s applicability was validated. The proposed model showed better
correlation with experimental data. It also, requires fewer variables. The steps to calculate all the neces-
sary variables for the model are discussed.

� 2016 Published by Elsevier B.V. on behalf of China University of Mining & Technology.

1. Introduction

Rock joints are mechanical discontinuities that have geological
origins. In general, the strength and deformability properties of
these discontinuities are quite different from those of intact rock.
In many cases, the discontinuities completely dominate both the
shear and the deformation behavior of the in situ rock mass in
given stress conditions [1,2]. Engineers in the mining, civil, and
petroleum industries often face problems that are associated with
jointed rock masses. Rock joint’s shear behavior must be examined
comprehensively to understand the jointed rock mass mechanical
behavior. Many applications could benefit from the study of joints
at a smaller scale, such as petroleum and energy recovery applica-
tions [3]. A number of researchers have tried to model the shear
behavior of a single rock joint under laboratory conditions-most
use the direct shear test. The test is conducted under two major
boundary conditions. A direct shear test under constant normal
load (CNL) and a direct shear test under constant normal stiffness
(CNS). A CNL is used when the rock can dilate freely i.e. with con-
stant normal load under shear displacement. This situation is typ-
ically encountered in surface rock structures such as rock slopes. In
case, the joint is constrained with surroundings materials and can-
not dilate freely upon shearing, the normal load will increase. This
load’s curve is controlled by the stiffness of surrounding rocks. The
CNS condition is typically encountered in deep underground

cavitations. The shear behavior of rock joints is not simply con-
trolled by boundary conditions (i.e., either CNL or CNS). It is also
controlled by a number of other important factors, including the
intact rock properties, joint roughness, shear rate, and filling
materials [4,5].

A comprehensive mathematical model that considers all of
these effective variables has not been developed. The application
of experimental methods and models is necessary to addressing
the difficulties of modeling this complex behavior analytically
[6]. Experimental results are useful both in modeling and calibrat-
ing several of the model’s parameters. They are also useful in val-
idating the results. Direct shear tests under the CNL condition were
conducted on natural rock joints in this study. The results were
used to render an experimental equation for the shear behavior.
Tests specifications, specimens, and materials are introduced in
Section 2. The Goodman’s model under the CNL condition and
the proposed model are discussed in Sections 3 and 4. Finally, Sec-
tion 5 concludes the paper.

2. Specimens and tests specifications

Fourteen limestone specimens were collected and prepared for
the purpose of understanding the shear behavior of joints in lime-
stone rocks. These specimens were collected from a dam site
located inside a limestone zone. The direct shear test procedure
conducted by Bandis et al. [7] was used in this study. The material’s
basic properties were examined through a series of direct shear
tests on solid blocks. The basic sliding resistance tests were
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performed on planar solid surface under various normal stresses.
The shear displacement rate was 0.5 mm/min. Triangular asperi-
ties with different angles (from 4� to 20�) were presented in the
samples. These asperity angles have considerable effect on the
shear’s behavior [8].

3. Model description

The three-line model proposed by Goodman [9] served as the
mathematical model’s starting point. Eqs. (1)–(3) define the shear
stress versus shear displacement for the region before peak shear
strength, between peak and residual shear strengths, and after
residual, respectively.

s ¼ sp
up

u; u < up ð1Þ

s ¼ sp � sr
up � ur

� �
uþ srup � spur

up � ur

� �
; up 6 u 6 ur ð2Þ

s ¼ sr ; u > ur ð3Þ
These equations are plotted in Fig. 1.

In this study, a two-domain model is proposed. The first part is
the same as Goodman’s, as it predicts the joint behavior almost
exactly in the same way as the experimental results. However,
the second and third parts of Goodman’s are simplified mathemat-
ical representation of the actual behavior. These deviated from the
actual test results in this case. In this paper, the after region peak is
modeled as a non-linear functional relationship with a shear dis-
placement in form of s / 1

u as calculated in Eq. (5). The curve in
Fig. 2 has a better correlation than Fig. 1 with experimental results.
The proposed model is defined as below:

s ¼ sp
up

u; 0 6 u 6 up ð4Þ

s ¼ sr þ ðsp � srÞup

u
; u > up ð5Þ

Only three parameters are required for the complete mathe-
matical modeling of a single joint’s shear behavior under the CNL
condition, as verified in (4) and (5). These parameters include the
peak shear strength, the residual shear strength, and shear dis-
placement at the peak shear strength. Hence, these three parame-
ters should be defined from the intact rock properties, the joint
geometry, the mechanical properties, loading type, and the loading
rate. Saeb and Amadei [10] applied (6) to estimate the peak shear
strength.

sp ¼ rn tanðuþ iÞð1� asÞ þ assr ð6Þ
where as and Sr are the proportion of the total joint area sheared
through asperities and the shear strength of asperities, respectively.
An accurate measurement of these parameters is not practical, par-
ticularly in in-situ tests. Ladanyi and Archambault [11] proposed
that the following formula be used to calculate as and i. This
requires determination of further unknowns [10] as shown in (7)–
(9).

a ¼ 1� 1� rn

rT

� �k1

ð7Þ

i ¼ arctanð _vÞ ð8Þ

_v ¼ 1� rn

rT

� �k2

� tanði0Þ ð9Þ

where k1 and k2 are empirical constants and rT is a transitional
stress. The uniaxial compressive strength of the intact rock can be
used as an estimate of rT [11].

More unknowns need to be defined before sp in (6) can be cal-
culated. Several of these parameters can be measured accurately;
several are only estimations. Thus, the application of (6) does not
guarantee exact results that are comparable to actual ones
obtained either by laboratory or in-situ tests. Eq. (10) was used
in this study to obtain a sufficiently accurate estimate of the peak
shear strength while using minimum number of variables. The val-
ues obtained from (10) were compared with the actual values
obtained and plotted in Fig. 3. This shows a very good agreement
between the two data sets.

sp ¼ rn tanðuþ imÞ ð10Þ
Goodman proposed the following model for sr at different nor-

mal stresses [9].

sr ¼ sp B0 þ 1� B0

rT
rn

� �
; for rn < rT ð11Þ

where B0 is the ratio of the residual strength to the peak shear
strength at a zero normal stress and Eq. (12) holds for the residual
strength.

Nomenclature

s shear stress
sp peak shear strength
sr residual shear strength
u shear displacement
up shear displacement at peak shear strength
ur residual displacement
rn normal stress
rT transitional stress in Ladanyi_Archambault
u internal friction angle
as proportion of total joint area sheared through asperities

sr shear strength of asperities
k1; k2 empirical constants in Ladanyi archambault
C1;C first and second constants of the experiment in the pro-

posed model
_v secant rate of dilatancy at peak shear strength
i arctanð _vÞ
im triangular asperity angle
Z shear strength factor in the proposed model
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Fig. 1. Goodman’s model for the shear behavior of rock joints.
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