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a b s t r a c t 

The effects of surface elasticity and surface tension on the stress field near nanosized surface asperities 

having at least one dimension in the range 1–100 nm is investigated. The general two-dimensional prob- 

lem for an isotropic stressed solid with an arbitrary roughened surface at the nanoscale is considered. The 

bulk material is idealized as an elastic semi-infinite continuum. In accordance with the Gurtin–Murdoch 

model, the surface is represented as a coherently bonded elastic membrane. The surface properties are 

characterized by the residual surface stress (surface tension) and the surface Lame constants, which dif- 

fer from those of the bulk. The boundary conditions at the curved surface are described by the general- 

ized Young–Laplace equation. Using a specific approach to the boundary perturbation technique, Goursat–

Kolosov complex potentials, and Muskhelishvili representations, the boundary value problem is reduced 

to the solution of a hypersingular integral equation. Based on the first-order approximation, some nu- 

merical results in the case of a periodic shape of the surface and the analysis of the influence of surface 

stress, surface tension, the surface shape, and the size of the asperity on the hoop stress at the surface 

are presented. It is found that the surface tension alone produces a high level of stress concentration, 

much more than can be reduced by surface stress arising as a result of deformation. The stress for- 

mula obtained by Gao (1991) for sinusoidal surfaces at the macrolevel is extended to nanosized surface 

asperities. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many defects, such as vacancies, interstitials, dislocations, 

disclinations, crystal twins, nanoclusters, and microcracks, are lo- 

cated in a subsurface of a real material. This is one of the rea- 

sons that an initially smooth surface becomes roughened under a 

number of natural phenomena: heat, light, short-wavelength elec- 

tromagnetic radiation, radioactive emissions, chemicals, mechani- 

cal stress, etc. ( Medina and Hilderliter, 2014; Pronina, 2015; Se- 

dova and Pronina, 2015 ). For instance, under mechanical loading, 

surface asperities with lateral sizes of about a hundred nanometers 

and vertical sizes about ten nanometers, that arise on mechanically 

and/or chemically polished Si(111) and Ge(111) surfaces of plates 

made from cylindrical mono-crystal products, has been addressed 

by Betechtin et al. (2003) . The same formations of a wavy surface 

roughness in heteroepitaxial films have been observed by Ozkan 

et al. (1997) . Various examples of nanostructured surfaces and sur- 

face effects are described by Rosei (2004) in a paper which extends 

and complements a previous review ( Moriarty, 2001 ). 
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The principal aim of the present paper is to extend a com- 

plex variables based technique, applied previously to the analy- 

sis of elastic materials with macro asperities of a slightly curved 

surface ( Grekov and Kostyrko, 2015; Grekov and Makarov, 2004; 

Vikulina et al., 2010 ) and interface ( Grekov, 2004, 2011; Grekov 

and Kostyrko, 2013 ), to a problem involving surface nano_asperities 

similar to those observed by Ozkan et al. (1997) and Betechtin 

et al. (2003) . We prove that this technique is an extremely pow- 

erful tool in the analysis of the elastic fields around nanosized sur- 

face asperities. 

Surface asperities are the source of stress concentrations. Ana- 

lyzing a sinusoidal surface perturbation of a stressed solid at the 

macrolevel, Gao (1991) has shown that even a slightly undulating 

surface can generate significant stress concentration that can in- 

duce fracture before the bulk stress reaches a critical level. Similar 

results have been analytically obtained for cycloid-shaped surfaces 

( Chiu and Gao, 1993 ), arbitrary weakly curved surfaces ( Grekov and 

Kostyrko, 2015; Grekov and Makarov, 2004; Medina, 2015; Medina 

and Hilderliter, 2014; Vikulina et al., 2010 ), and interfaces ( Grekov, 

2004, 2011; Grekov and Kostyrko, 2013 ). 

All of these solutions are suitable for the case of macroscale 

roughness when the effect of surface tension and surface elastic- 

ity on the stress state of the solid is negligible in comparison with 

the effect of the macroscopic bulk elastic behavior. At the same 

http://dx.doi.org/10.1016/j.ijsolstr.2016.06.013 

0020-7683/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.06.013&domain=pdf
mailto:magrekov@mail.ru
mailto:sergey.kostyrko@gmail.com
http://dx.doi.org/10.1016/j.ijsolstr.2016.06.013


154 M.A. Grekov, S.A. Kostyrko / International Journal of Solids and Structures 96 (2016) 153–161 

time, it was observed by Wang et al. (2011) that the mechanics 

of nanosized structural elements, such as nanoparticles, nanowires, 

nanobeams, nanoplates, and nanoshel s as well as heterogeneous 

materials containing nanoscale inhomogeneities deviates notably 

from general classical mechanics. Unlike bulk material elements, 

the nanostructures have elastic properties which are highly depen- 

dent on their size (e.g. Duan et al., 2009; Miller and Shenoy, 2000; 

Shenoy, 2005; Altenbach et al., 2010; Eremeyev and Morozov, 2010; 

Goldstein et al., 2010; Shodja et al., 2012 ). 

The size dependency of the mechanical properties at the 

nanoscale can be understood by incorporating the effect of sur- 

face stress. The basic concept of surface/interface stress in solids 

was first proposed by Gibbs (1906) . Later, Gurtin and Murdoch 

(1975, 1978) ; Gurtin et al. (1998) ; Murdoch (1976) elaborated the 

mathematical framework incorporating surface stress into contin- 

uum mechanics. Miller and Shenoy (20 0 0) compared the results 

obtained by the continuum model with those obtained by means 

of the embedded atom method for nanobeams and nanowires and 

found that the results were almost indistinguishable. Basically, the 

continuum surface stress model assumes that a nanostructure is 

made of the bulk and some surfaces ( Shenoy, 2005 ) with the sur- 

face modules of the nanostructure being different from those of 

the bulk. 

In order to study the effect of surface and interface stresses, 

numerous boundary value problems have been solved for elas- 

tic solids with nano-inhomogeneities, based on Gurtin and Mur- 

doch’s theory and generalized Young–Laplace equation (e.g. Tian 

and Rajapakse, 2007a, 2007b; Mogilevskaya et al., 2008; Kushch 

et al., 2013; Shodja et al., 2012; Gutkin et al., 2013; Grekov and 

Yazovskaya, 2013; Bochkarev and Grekov, 2014 , etc.). The influence 

of the surface elasticity on the elastic field even at a planar surface 

has been reported in Vikulina and Grekov (2012) for the case when 

the external forces applied to this surface have changed within a 

nanometer region. 

We are cognizant of only a few papers where the surface stress 

is studied considering nanosized surface asperities ( Fu and Wang, 

2010; Gill, 2007; Mohammadi et al., 2013; Wang et al., 2010; 

Weissmuller and Duan, 2008 ). Gill (2007) has investigated the dis- 

tribution of the stress at a nanoscale surface flaw in the simplest 

case, when the surface and substrate have the same elastic prop- 

erties and the surface stress does not depend on the surface strain 

and is defined by a determinate function. Owing to such unusual 

simplifications, he managed to derive an analytical expression for 

the stress at the surface of an isolated groove of varying sharpness. 

Following Gurtin and Murdoch’s surface elasticity, the elastic field 

around a single nanosized groove and bugle has been investigated 

by Fu and Wang (2010) through the finite element method. They 

found that when the size of the defects shrinks to a nanometer, 

the stress fields around such defects will be affected significantly 

by the surface effects. The studies of the other papers listed above 

have been basically focused on the derivation and analysis of the 

effective surface stress ( Wang et al., 2010; Weissmuller and Duan, 

2008 ) and the effective properties of a nominal flat surface for 

both randomly and periodically rough surfaces ( Mohammadi et al., 

2013 ), but the impact of the surface stress and surface tension on 

the stress distribution and stress concentration at a roughened sur- 

face has not been addressed in those papers. 

In the present paper, the approach developed by Grekov (2004, 

2011) ; Grekov and Kostyrko (2013, 2015) ; Grekov and Makarov 

(2004) ; Vikulina et al. (2010) for the analysis of the elastic fields 

induced by slightly curved surface/interface at the macrolevel is 

used to study the effect of nanosized surface asperities arising 

on an initially planar surface. We consider the 2-D problem on 

the elastic half-space with a slightly curved surface under remote 

tension and a generalized Young–Laplace boundary condition with 

unknown surface stress. We solve this problem more completely 

and correctly than was done in Vikulina (2014) . First, we use the 

boundary perturbation technique and derive the integral depen- 

dence of the complex potentials on the surface stress to any-order 

of approximation. Then, based on the reductive constitutive equa- 

tions of Gurtin and Murdoch’s surface elasticity model, used in a 

number of publications (e.g. Tian and Rajapakse, 20 07a, 20 07b; 

Duan et al., 2009; Altenbach et al., 2010; Shodja et al., 2012; Gutkin 

et al., 2013 , etc.), we satisfy the inseparability condition of the 

surface and substrate that leads, for an arbitrary surface relief, to 

the hypersingular integral equation in an approximation of any or- 

der of the perturbation method. Similar integral equations have 

been analytically solved for the half-plane under periodic loading 

( Vikulina and Grekov, 2012 ) and a circular nanohole ( Grekov and 

Yazovskaya, 2014 ) with the appropriate methods. In the first-order 

approximation, we derive the solution of the integral equation in 

an explicit form when the surface relief is described by a peri- 

odic function, and present formulas for the complex potentials and 

stress tensor components in the form of complex series. At the end 

of the paper, we give the most essential numerical results and their 

analysis for some shapes of the surface. 

2. Problem formulation 

We consider a semi-infinite elastic solid with a roughened sur- 

face slightly deviating from a planar one. The surface has elastic 

properties differing from the same properties of the volume and, 

according to the theory of surface elasticity ( Gurtin and Murdoch, 

1975, 1978 ), is represented as very thin film which adheres to the 

bulk material without slipping. The plane strain conditions are as- 

sumed to be satisfied and the solid is subjected to a remote tensile 

loading T and extra surface stress σ s ( Fig. 1 ). 

So, we come to the 2-D boundary value problem for the elas- 

tic half-plane � = { z : x 2 < ε f (x 1 ) , x 1 ∈ (−∞ , + ∞ ) } of the com- 

plex variable z = x 1 + ix 2 ( i is the imagine unit) with the curved 

boundary � = { z : z ≡ ζ = x 1 + iε f (x 1 ) } . 
The function f ( x 1 ) describes the profile of the surface and can 

be either a continuous periodic function as in Fig. 1 , i.e. f (x 1 ) = 

f (x 1 + a ) , or f (x 1 ) = 0 if | x 1 | ≥ a as in Grekov and Makarov 

(2004) and Grekov (2011) . In the both cases, max | f (x 1 ) | = 

a, ε| f ′ (x 1 ) | < 1 , 0 < ε � 1 . 

As follows from the definition of � and f , the maximum devia- 

tion of the surface from the plane x 2 = 0 is εa . 

To obtain the boundary condition at a � free from external 

forces, one can consider the equilibrium of a surface section of in- 

finitesimal length ds on the plane z , as shown in Fig. 2 , and unit 

length in the transverse direction. Besides the surface stresses σ s 

and σs + dσs , the section is subjected to the action of the volume 

with the net force σ n ds (per unit depth) where σ n is the traction. 

Let R, θ be the polar coordinates of the point M and R be the ra- 

dius of curvature of the arc MN at this point. Then, equating the 

sum of the x 1 and x 2 projections of all forces to zero and proceed- 

Fig. 1. The model of semi-infinite elastic solid with a nanosized surface asperity. 
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