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a b s t r a c t 

Scale effect was repeatedly founded in Explosion containment vessels (ECVs) that with an increment 

of scale factor, the relative weight (the ratio of explosive destruction charge to the weight of vessel) 

decreased drastically. Also a reduction of the amount of deformation before failure and an increase in the 

tendency to the brittle failure were observed in large size structures. Though the scale effect was believed 

relevant with crack propagation energy and is decisive to the ultimate strength of explosively loaded 

structures, there’s still no satisfying mechanism had been obtained in the past decades. In this paper, 

a numerical method combining with a phenomenological failure criterion was presented to re-examine 

the scale effect problems, where a failure criterion fully considering strain rate softening was implanted 

into the finite element code to account for the explosive destruction of the vessel. FSI (Fluid Structure 

Interaction) simulation and crack analysis covering the different scale factor from 1 to 10 were conducted, 

and the dynamical crack propagation and branching process was clearly revealed, which illuminates the 

cause of fracture and fragments of vessels, as well as the scale law of destruction charge. It was concluded 

that strain rate softening becomes more significant with an increase of strain rate, which leads to a rapid 

destruction in a very narrow region even the plastic deformation is too late to occur in the rest parts 

of the material, thus the brittle fracture mode was presented. The approach illustrated in this paper also 

provides an effective way to assessment the limit load of ECVs, which is helpful to prevent catastrophic 

brittle and quasi-brittle failure of the vessels. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The conception of explosion containment vessels (ECVs) was 

firstly proposed for the use of nuclear test in 1960 s, afterwards, 

its function enlarged on destruction chemical weapons, storage and 

transportation of hazardous materials, etc. When a larger size and 

volume of vessel was to be required to contain much more explo- 

sive energy, the scale effect became extremely important in deter- 

mine the actual strength and limit load of large structure. Some 

Geometric similar vessels with different scale factors were inves- 

tigated by Soviet Union scientists group. Ivanov et al. (1972, 1974 ) 

studied similar closed steel vessels loaded by the explosion of an 

internal charge. It followed from their experiments that reducing 

the size of vessel by a factor of 15 led to an increase in the rela- 

tive weight ξ by a factor of 15 ∼16. Here the relative weight ξ is the 

ratio of the explosively destroying charge to the weight of the ves- 
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sel. Ivanov et al. (1981 ) tested a full sized specimen and a geomet- 

rically similar model with a scale factor of 10. The results showed 

that with similar ξ under otherwise equal conditions, when the 

model remained undamaged, the full sized vessel broke into five 

fragments roughly equal in size. Measurements on the fragments 

showed no residual strain. The other examples of scale effect were 

provided by Tsypkin et al. (1975 ) and Tsypkin and Ivanov (1981 ), 

where a reduction of the amount of deformation before failure and 

an increase in the tendency toward brittle failure was found in 

structures, with an increase in their size. In addition, the scale ef- 

fect widely existed in explosive forming ( Ezra and Penning, 1962 ), 

double-layered cylindrical shell ( Bondar’ et al., 1996 ) and in the 

first-cycle elastic strain response of a spherical ECV ( White and 

Trott, 1980 ). Since the scale effect origin in a brittle failure of a 

vessel made of plastic steel, it is highly necessary to study the dy- 

namic response of material that beyond the limits of elastic defor- 

mation, not only for the fuller utilization of the strength reserves, 

but also for the prevention of the catastrophic brittle and quasib- 

rittle failures. 

A possible reason that an increase in strain rate causes a change 

in properties for vessel steel particularly increases in the yield 
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strength. However, this strength hardening by increasing strain rate 

by 10 times should not exceed 5% for vessel steels. 

One cannot exclude the possibility of the accumulation of ir- 

reversible change in the vessel material, since the vessels were 

destroyed by progressively increasing the weight of the exploded 

charge. However, the fact that the vessel with least numbers of 

charges was destroyed at a ξ less than that otherwise similar con- 

ditions vessels, which indicated that the scale effect must be im- 

portant in the case of a single explosion. 

Ivanov et al. (1972 ), Tsypkin and Ivanov (1981 ) and Golubev et 

al. (1981 ) concluded that the scale effect is of energy character. It 

may be a promising direction to consider the crack propagation en- 

ergy to reveal the mechanism of scale effect, however, the research 

along this direction is not well developed, the research literatures 

on the topic of scale effect became scarcely after 1990 s, just as 

figured out by Ivanov et al. (1972 ), the detailed mechanism of the 

effect still remains unclear. 

In this paper, we re-examine the experimental description and 

data of scale effect. Firstly, a finite element model considering 

fluid-structure interaction (FSI) was used to accurately calculate 

the loading and response of the vessel, including peak pressure 

and impulse by detonation, the strain histories and strain rates. 

Secondly, a more elaborate finite element model with an initial 

crack was employed. Combining with a proposed phenomenologi- 

cal failure criterion, the crack growth and branching and how they 

cause the fragments of the vessel are clearly revealed by numeri- 

cal simulation. The simulated fracture and fragments show a good 

agreement with experiments. The results indicated that scale ef- 

fect indeed originate in strain rate softening rather than hardening 

and is strongly depend upon dynamic crack propagation process. 

The approach illustrated in this paper also provides a way to de- 

termine the limit loads of ECVs, as well as to prevent catastrophic 

brittle failures. 

2. Experiments 

2.1. Experimental description 

Series experiments on the freely suspended spherical vessels 

filled with water were performed by Ivanov et al. (1972, 1981 ). A 

full sized specimen and a geometrically similar model with a scale 

factor of 10 were used. The explosive charge was made of a mix- 

ture of trotyl and hexogene, 50% of each. The full sized vessel was 

made of grade 22 K thick sheet boiler steel, while the model was 

made from a fragment of a shell of a nature specimen that failed 

under elastic strain in one of the experiments. The mechanical 

properties of vessel were: R m 

= 490 MPa and R e = 274 MPa, while 

the model made from fragments was heat treated and their me- 

chanical properties are R m 

=529 MPa and R e =265 MPa, which was 

close to the raw vessels. 

The failure in the full-size vessel was catastrophic, with com- 

plete separation of the body into five fragments, which arising 

from the rapidly propagation and branching of cracks. However, 

the failure in the model was local, without complete separation of 

the body into parts under series given charges from2.16 g to 4.54 g. 

The cracks are formed at plastic strains of 0.6–0.8%. Fig. 1 shows 

the two failure modes. 

Table 1 gives the descriptions of different failure modes of full 

sized vessel and small models in experiments ( Ivanov et al., 1981 ). 

2.2. Non-dimensional analysis 

Two similar elements of the wall of vessels differing in linear 

dimensions by a factor n and loaded by the explosion of charges 

at ξ =const were considered in non-dimensional analysis. Followed 

the method used by Ivanov et al. (1972 ), some essential assump- 

tion was listed: 

(1) The specific energy of crack formation per unit square q c is 

a constant and to be a part of specific elastokinetic energy 

q k . 

(2) The total energies expended on the propagation of the 

cracks through similar elements of the vessels will differ by 

a factor n 2 . 

(3) The reserves of elastokinetic energy Q k , from which the 

crack propagation energy is drawn, differ in these elements 

by a factor n 3 . 

Based on above assumptions, we have: 

Q k 

Q c 
= R 

q k 
q c 

= const (1) 

where R is the characteristic dimension of structures, Q c is the en- 

ergy expended on crack propagation, q k is the specific elastokinetic 

energy. Since q k is only a part of the specific total specific energy 

q , ( q k =ηq ), Eq. (1) can be re-expressed as: 

q 

q c 
= 

const 

ηR 

(2) 

the value η can be determined by dynamic stress-strain curve for 

the vessel steel as the ratio of the elastic strain energy to the total 

energy. For the duplex-linear hardening, 

η = λ + (1 − λ) 
q s 

q 
(3) 

where λ = E 2 / E 1 , E 1 is the Young’s modulus, E 2 is Hardening tan- 

gential modulus. q s is the elastic strain energy at the yield point. 

Eq. (3) can be rewritten in terms of maximum strain, ɛ , and 

strain at the yield point, ɛ 0 . Considering the maximum tangential 

stress σ to the yield stress σ s : 

σ

σs 
= 1 − λ + λ

ε 

ε 0 
= 

√ 

q k 
q s 

(4) 

or 

ηq 

q s 
= 

(
1 − λ + λ

ε 

ε 0 

)2 

(5) 

from Eqs. (3) and ( 4 ), we can obtain: 

q s = qλ

[(
1 − λ + λ

ε 

ε 0 

)3 

− ( 1 − λ) 

]−1 

(6) 

η = λ
(

1 − λ + λ
ε 

ε 0 

)2 
[(

1 − λ + λ
ε 

ε 0 

)2 

− ( 1 − λ) 

]−1 

(7) 

For given steel, q can be written in the form: 

q = κξ 2 (8) 

where κ is a material constants relating with density and sound 

speed of material. 

Therefore the relative weight of the destroying charge and the 

parameters of the vessel can be expressed: 

ξ 2 + 

1 − λ

λ
· q 0 
κ

= 

C 1 
Rλ

(9) 

where C 1 = 

const 
κ q c 

From , ( 7 ) and ( 8 ), the expression relating the radius of the ves- 

sel and the maximum strain at fracture can be obtained: 

ε 

ε 0 
= 

1 

λ

√ 

R 0 

R 

− 1 − λ

λ
(10) 
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