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a b s t r a c t 

In computational solid mechanics path-following methods have been proven useful when dealing with 

non-monotonously evolving loading magnitudes as encountered e.g. in instability or softening behaviour. 

The present work derives from a displacement-based method a cavity-volume-based path-following 

method and considers its application specifically to cardiac mechanics problems. Both methods are able 

to account for an arbitrary number of simultaneously acting loading conditions. When applied to the 

Newton-Raphson method, the corresponding loading increments are computed by means of volume in- 

crements or point-wise prescribed displacement increments, respectively. No additional variables are re- 

quired and the physics of the problem at hands is not altered. Both methods are implemented in an in- 

house meshfree modelling software and successfully applied to non-linear elastic and inelastic problems 

in structural mechanics. The cavity-volume control method, in particular, is demonstrated to accurately 

predict the highly non-linear elastic and anisotropic material behaviour encountered when modelling the 

heart. Albeit, the proposed methods can be equally used e.g. in finite element methods, they are very 

well suited for meshfree methods where the Kronecker delta property does not apply. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the last four decades, computational solid mechanics has 

become widely accepted for the analysis of linear and non-linear 

structural problems of arbitrary geometry, loading and support 

conditions, material behaviour etc. In the non-linear case, the re- 

sponse of the structure can be complex and the load-displacement 

curve can be neither convex nor monotonic in one or both vari- 

ables, the load and the displacements. Especially, in the presence 

of limit points in the load-displacement curves such as in sta- 

bility analysis or softening behaviour of structures (damage, plas- 

ticity), the load increment cannot be formulated directly. Instead, 

the loading parameter itself is considered as an unknown which 

is solved via a constraint of some kind leading to so-called path- 

following methods. Early on, so-called arc-length methods have 

been developed to trace the load-displacement curves beyond limit 

points. Essentially, a side condition is formulated which links the 
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increment of the load vector to an increment in the displacement 

vector. Starting from the original ideas of Riks (1972) ; 1979 ), where 

an orthogonality condition has been formulated as a side con- 

dition, many modifications have been proposed ( Crisfield, 1981; 

Garcea et al., 2002; Ramm, 1981; Riks et al., 1996 ). Specifically 

for one-dimensional instability and bifurcation analysis, Eriksson 

(1998) introduced a generalised framework which is able to predict 

the structural behaviour for one or more governing parameters, e.g. 

loading magnitude, geometry etc. Geers (1999) proposed a unified 

framework for subplane methods featuring a self-adaptive solution 

control scheme for initial load estimation, adaptation and correc- 

tion as well as sign prediction when passing limit points. In the 

context of ductile and brittle failure, dissipation-based approaches 

have been introduced by Lorentz and Badel (2004) ; Verhoosel et al. 

(2009) , amongst others. 

These methods have in common that the load increment is 

formulated as a, in general, non-linear function of the norm of 

the displacement vector. The function differs from one method 

to another and some would be more suitable to certain types 

of behaviour than others. Whatever the method, the load incre- 

ments are in generally small and the calculation of the same could 

be cumbersome and time consuming. Alternatively, established in 
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commercial software is the case of displacement control, where 

not the load vector but a displacement vector is prescribed driv- 

ing the simulation. By multiplication with the stiffness matrix 

a corresponding load vector is generated. In this form, however, 

the method does not consider arbitrary load conditions. More- 

over, these methods are formulated mainly for the finite element 

method where the Kronecker delta property applies. In contrast, 

many meshfree methods have no nodal degrees of freedom and 

the displacement-control must be defined differently. 

In the present work, two straightforward but very efficient 

path-following methods are presented. They are characterized by 

the property that, on the one hand, the loading vector can be ar- 

bitrary but on the other hand, the loading increment is controlled 

by a choice of either volume or displacement increments render- 

ing the methods volume or displacement-controlled ones, respec- 

tively. More in detail, the methods have the following features: 1) 

They are extremely simple and can be directly implemented; 2) In 

comparison with other available methods, it allows for large load 

increments; 3) The choice of the volume or displacement evolu- 

tion which controls the calculation can be arbitrary as long as it 

is being physically meaningful; 4) As numerical experience shows, 

the methods are robust and, although they do not cover all cases, 

they can be efficiently applied to a large number of them; 5) The 

methods are formulated for multiple loading conditions that can 

exhibit each different monotonously as well as non-monotonously 

evolving loading magnitudes, as it is the case for the blood filling 

pressures in the heart chambers during the cardiac cycle. 

The path-following method is implemented in the in-house 

modelling software SESKA. SESKA is a numerical modelling soft- 

ware based on the element free Galerkin method (EFGM) which 

uses moving least squares approximations (MLS) of the solution 

over the domain. For further details on EFGM and MLS methods, 

the reader is directed to the paper by Belytschko et al. (1994) . It 

should be stressed again that the numerical methods outlined in 

the following can be applied to a finite element framework just as 

well. 

The plan of this paper is as follows: Section 2 outlines the stan- 

dard approach to solve a quasi-static non-linear solid mechanics 

problem. Subsequently, in Section 3 the displacement-control ap- 

proach is introduced which is subsequently extended to a cavity 

volume-control approach in Section 4 . In Section 5 various applica- 

tions involving elastic and inelastic material behaviour successfully 

demonstrate the flexibility of both methods. The cavity-volume 

control method, in particular, is shown to accurately predict the 

highly non-linear elastic and anisotropic material behaviour of car- 

diac mechanics problems. 

2. The variational principle and its linearization 

Let us first consider a non-linear boundary value problem in 

the domain B with the boundary ∂B. Dirichlet boundary condi- 

tions are prescribed on ∂ B D ⊂ ∂ B and Neumann boundary condi- 

tions are prescribed on ∂ B N = ∂ B \ ∂ B D . 

Let W (ext) define the external virtual work in the Lagrangian 

form as follows 

W (ext) = 

∫ 
B 

b · δu dV + 

∫ 
∂B N 

ˆ t (n ) · δu dA , (1) 

where δu denotes the virtual displacement vector, b the body force 

and 

ˆ t (n ) the external traction vector prescribed on B N . dV is a vol- 

ume element of domain B, whereas dA is a surface element of 

its corresponding boundary ∂B with the outward surface normal 

vector n . 

Now let F (u ) = 1 + Grad u be the deformation gradient and 

define C = F T F as the right Cauchy-Green deformation tensor and 

E = 

1 
2 ( C − 1 ) as the Green strain tensor. To account for possible in- 

elastic material response we consider the multiplicative decompo- 

sition of F into an elastic and an inelastic part F = F e F p and define 

C e = F T e F e = F −T 
p CF −1 

p as the elastic right Cauchy-Green deformation 

tensor. We assume a general material response with an elastic 

range and let ψ( C e ( E, F p )) define the strain stored energy function 

per unit un-deformed volume. This definition can be modified as 

necessary. It is general enough for our considerations here. Then 

the variation of the internal potential with respect to E in the La- 

grangian form reads as follows 

�(int) = 

∫ 
B 

∂ψ 

∂E 

: δE dV . (2) 

Considering only mechanical processes, the first law of thermody- 

namics provides the following variational statement 

F = �(int) − W (ext) = 

= 

∫ 
B 

S : δE dV −
∫ 
B 

b · δu dV −
∫ 
∂B N 

ˆ t (n ) · δu dA = 0 , (3) 

where Eqs. (1) and (2) have been substituted and S denotes the 

second Piola-Kirchhoff stress tensor given by 

S = 

∂ψ 

∂E 

. (4) 

The double dot operator (:) denotes the scalar product of tensors. 

This variational principle is supplemented by essential boundary 

conditions, the so-called Dirichlet boundary conditions 

u = 

ˆ u on ∂B D . (5) 

In the case of inelastic deformations, the constitutive relations are 

to be extended to encompass evolution equations of the inelastic 

deformation itself, together with possible internal parameters. For 

details of these formulations the reader is referred to the standard 

text books (e.g. Bonet and Wood, 1997; Dunne and Petrinic, 2005; 

Simo and Hughes, 2006; Zienkiewicz and Taylor, 2005 ). Specifi- 

cally, for the one used in the examples presented in this paper in 

Section 5 , details can be found in Sansour and Kollmann (1998) . 

Now, considering the general case of finite strain and non-linear 

material behaviour, the above variational statement is solved incre- 

mentally and iteratively employing the Newton-Raphson method. 

For this, at each iteration step, i , of an incremental loading or time 

step, n , Eq. (3) is linearized using a first-order Taylor expansion in 

the vicinity of some known solution of the displacement field, i.e. 

solution u 

i −1 
n as obtained in the previous iteration step or for i = 0 

the converged solution of the previous loading step, u n −1 , which 

yields 

F 

(
u 

i 
n 

)
= F 

(
u 

i −1 
n + �u 

)
= F 

(
u 

i −1 
n 

)
+ 

∂F 

∂u 

| u i −1 
n 

�u ≈ 0 , (6) 

where �u is the incremental displacement field such that the un- 

known displacement field in the current iteration step u 

i 
n = u 

i −1 
n + 

�u . Making use of a numerical approximation of the displacement 

field, here MLS-approximations, the linearized problem formula- 

tion ( Eq. (6) ) results in a discrete equation system of the following 

form 

[ K ] 
i 
n [ �u ] 

i 
n = 

[
f (ext) 

]i 

n 
−

[
f (int) 

]i 

n 
= [ r ] 

i 
n , (7) 

where the external force vector [ f (ext) ] 
i 
n corresponds to Eq. (1) , the 

internal force vector [ f (int) ] 
i 
n to Eq. (2) , [ K ] i n denotes the tangent 

matrix and [ r ] i n the residual vector of the discrete equation sys- 

tem. As for the variational principle, we understand the tangent or 

stiffness matrix as a general one, which could be an elastic-plastic 

one, derived via a suitable integration method. Here too, the reader 

is referred to standard textbooks. 

As mentioned before, the non-linear nature of the problem ne- 

cessitates that the external loads P ∈ { b , ̂  t (n ) } are incrementally ap- 

plied. The loading magnitude at a loading step or time step n is 
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