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a b s t r a c t 

A novel general purpose Finite Element framework is presented to study small-scale metal plasticity. A 

distinct feature of the adopted distortion gradient plasticity formulation, with respect to strain gradient 

plasticity theories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin (2004) through 

the prescription of a free energy dependent on Nye’s dislocation density tensor. The proposed numer- 

ical scheme is developed by following and extending the mathematical principles established by Fleck 

and Willis (2009). The modeling of thin metallic foils under bending reveals a significant influence of 

the plastic shear strain and spin due to a mechanism associated with the higher-order boundary condi- 

tions allowing dislocations to exit the body. This mechanism leads to an unexpected mechanical response 

in terms of bending moment versus curvature, dependent on the foil length, if either viscoplasticity or 

isotropic hardening are included in the model. In order to study the effect of dissipative higher-order 

stresses, the mechanical response under non-proportional loading is also investigated. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Experiments have shown that metallic materials display strong 

size effects at both micron and sub-micron scales ( Fleck et al., 

1994; Nix and Gao, 1998; Stölken and Evans, 1998; Moreau et al., 

2005 ). Much research has been devoted to modeling the experi- 

mentally observed change in the material response with dimin- 

ishing size ( Fleck and Hutchinson, 1997; Qu et al., 2006; Kluse- 

mann et al., 2013 ) in addition to studies of size effects in void 

growth ( Liu et al., 20 05; Niordson, 20 07 ), fiber reinforced materi- 

als ( Bittencourt et al., 2003; Niordson, 2003; Legarth and Niordson, 

2010 ), and fracture problems ( Martínez-Pañeda and Betegón, 2015; 

Martínez-Pañeda and Niordson, 2016 ). Most attempts to model size 

effects in metals have been based on higher-order continuum mod- 

eling, and different theories, both phenomenological ( Fleck and 

Hutchinson, 2001; Gudmundson, 2004; Gurtin, 2004; Gurtin and 

Anand, 2005 ) and mechanism-based ( Gao et al., 1999 ) have been 

developed. All these theories aim at predicting size effects in poly- 

crystalline metals in an average sense, without explicitly account- 

ing for the crystal lattice, nor for the behavior of internal grain 

boundaries. 

∗ Corresponding author. Tel: +34699765542; fax: +34 985 18 24 33. 

E-mail address: mail@empaneda.com (E. Martínez-Pañeda). 

While higher-order energetic and dissipative contributions are 

a common feature among the majority of the most advanced phe- 

nomenological Strain Gradient Plasticity (SGP) theories (see, e.g., 

Gudmundson, 20 04; Gurtin and Anand, 20 05; 20 09; Fleck and 

Willis, 2009b ), the need to constitutively account for the plastic 

spin, as proposed about ten years ago by Gurtin (2004) , to properly 

describe the plastic flow incompatibility and associated dislocation 

densities, has been mostly neglected in favor of simpler models. 

However, the use of phenomenological higher-order formulations 

that involve the whole plastic distortion (here referred to as Distor- 

tion Gradient Plasticity , DGP) has attracted increasing attention in 

recent years due to its superior modeling capabilities. The studies 

of Bardella and Giacomini (2008) and Bardella (2009 ; 2010 ) have 

shown that, even for small strains, the contribution of the plas- 

tic spin plays a fundamental role in order to provide a descrip- 

tion closer to the mechanical response prediction of strain gradi- 

ent crystal plasticity. This has been further assessed by Poh and 

Peerlings (2016) , who, by comparing to a reference crystal plastic- 

ity solution obtained with the theory by Gurtin and Needleman 

(2005) , showed that the plastic rotation must be incorporated to 

capture the essential features of crystal plasticity. Moreover, Poh 

and Peerlings (2016) numerically elucidated that the localization 

phenomenon taking place in the Bittencourt et al. (2003) com- 

posite unit cell benchmark problem can only be reproduced by 

DGP. Gurtin (2004) theory has also been employed by Poh and 
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co-workers ( Poh, 2013; Poh and Phan, 2016 ) through a novel ho- 

mogenization formulation to describe the behavior of each grain 

in a polycrystal where grain boundaries are modeled to describe 

effects of dislocation blockage or transmittal. 

However, despite the superior modeling capability of DGP with 

respect to SGP, the literature is scarce on the development of a 

general purpose Finite Element (FE) framework for DGP. Particu- 

larly, the use of higher-order dissipative terms - associated with 

strengthening mechanisms - is generally avoided due to the re- 

lated computational complexities. This is the case of the very re- 

cent FE implementation of Poh and Peerlings (2016) and the earlier 

work by Ostien and Garikipati (2008) , who implemented Gurtin 

(2004) theory within a Discontinuous Galerkin framework. Ener- 

getic and dissipative contributions are both accounted for in the 

recent ad hoc FE formulation for the torsion problem by Bardella 

and Panteghini (2015) , also showing that, contrary to higher- 

order SGP theories, Gurtin (2004) DGP can predict some energetic 

strengthening even with a quadratic defect energy. 

In this work, a general purpose FE framework for DGP is de- 

veloped on the basis of an extension of the minimum principles 

proposed by Fleck and Willis (2009b ). The numerical scheme in- 

cludes both energetic and dissipative higher-order stresses and the 

effect of the latter under non-proportional loading is investigated. 

The novel FE framework is particularized to the plane strain case 

and applied to the bending of thin foils, of particular interest to the 

study of size effects in metals (see, e.g., Yefimov et al., 2004; Yefi- 

mov and Giessen, 2005; Engelen et al., 2006; Evans and Hutchin- 

son, 20 09; Idiart et al., 20 09; Polizzotto, 2011 ) since the experi- 

ments of Stölken and Evans (1998) (see also Moreau et al., 2005 ). 

Computations reveal a dependence of the results on the foil length 

if either rate-dependent plasticity or isotropic hardening are in- 

cluded in the model. This is a consequence of the definition of 

the energetic higher-order contribution as a function of Nye’s dis- 

location density tensor ( Nye, 1953; Fleck and Hutchinson, 1997; 

Arsenlis and Parks, 1999 ), that is intrinsic to Gurtin (2004) the- 

ory. This unexpected effect, absent in conventional theories and in 

many GP theories, is accompanied with the development of plastic 

shear and plastic spin, which turn out to influence the overall me- 

chanical response in bending. Such a behavior is triggered by the 

interaction between the conventional and the higher-order bound- 

ary conditions, the latter allowing dislocations to exit the foil at 

the free boundaries. The foil length dependence of the mechani- 

cal response is emphasized by the presence of the plastic spin in 

Gurtin (2004) DGP, but it also characterizes the Gurtin and Anand 

(2005) SGP theory, still involving Nye’s tensor restricted to the 

assumption of irrotational plastic flow (that is, vanishing plastic 

spin). Hence, one of the results of the present investigation con- 

cerns with the usefulness of two-dimensional analyses with appro- 

priate boundary conditions to model micro-bending phenomeno- 

logically. 

Outline of the paper. The DGP theory of Gurtin (2004) is presented 

in Section 2 , together with the novel minimum principles gov- 

erning it. The FE formulation and its validation are described in 

Section 3 . Results concerning bending of thin foils are presented 

and discussed in Section 4 . Some concluding remarks are offered 

in Section 5 . 

Notation. We use lightface letters for scalars. Bold face is used 

for first-, second-, and third-order tensors, in most cases respec- 

tively represented by small Latin, small Greek, and capital Latin 

letters. When we make use of indices they refer to a Cartesian 

coordinate system. The symbol “ · ” represents the inner prod- 

uct of vectors and tensors (e.g., a = b · u ≡ b i u i , b = σ · ε ≡ σi j ε i j , 

c = T · S ≡ T i jk S i jk ). For any tensor, say ρ, the inner product by it- 

self is | ρ| 2 ≡ ρ · ρ. The symbol “ × ” is adopted for the vec- 

tor product: t = m × n ≡ e i jk m j n k = t i , with e ijk denoting the alter- 

nating symbol (one of the exceptions, as it is a third-order ten- 

sor represented by a small Latin letter), and, for ζ a second-order 

tensor: ζ × n ≡ e jlk ζ il n k . For the products of tensors of different 

order the lower-order tensor is on the right and all its indices 

are saturated, e.g.: for σ a second-order tensor and n a vector, 

t = σn ≡ σi j n j = t i ; for T a third-order tensor and n a vector, Tn 

≡ T ijk n k ; for L a fourth-order tensor and ε a second-order tensor, 

σ = L ε ≡ L i jkl ε kl = σi j . Moreover, ( ∇u ) ij ≡ ∂ u i / ∂ x j ≡ u i, j , ( div σ) i ≡
σi j, j , and ( curl γ ) i j ≡ e jkl γil,k designate, respectively, the gradient 

of the vector field u , the divergence of the second-order tensor 

σ , and the curl of the second-order tensor γ , whereas ( dev ς ) i j ≡
(ς i j − δi j ς kk / 3) (with δij the Kronecker symbol), ( sym ς ) i j ≡ (ς i j + 

ς ji ) / 2 , and ( skw ς ) i j ≡ (ς i j − ς ji ) / 2 denote, respectively, the devi- 

atoric, symmetric, and skew-symmetric parts of the second-order 

tensor ς. 

2. The flow theory of distortion gradient plasticity and the new 

stationarity principles 

The theory presented in this section refers to the mechanical 

response of a body occupying a space region 	, whose external 

surface S , of outward normal n , consists of two couples of comple- 

mentary parts: the first couple consists of S t , where the conven- 

tional tractions t 0 are known, and S u , where the displacement u 

0 

is known, whereas the second couple consists of S dis 
t , where dis- 

locations are free to exit the body , and S dis 
u , where dislocations are 

blocked and may pile-up : S = S t ∪ S u = S dis 
t ∪ S dis 

u . 

This section is devoted to the presentation of compatibility, 

balance, and constitutive equations. For their derivation and for 

more insight on their mechanical meaning, the reader is referred to 

Gurtin (2004) and Bardella (2010) . Furthermore, we will also pro- 

vide two minimum principles extending those formulated by Fleck 

and Willis (2009b ) for a higher-order SGP, to Gurtin (2004) DGP. 

On the basis of these minimum principles we will develop the new 

FE framework in Section 3 . 

2.1. Kinematic and static field equations 

2.1.1. Compatibility equations 

In the small strains and rotations regime, the plastic distortion 

γ , that is the plastic part of the displacement gradient, is related 

to the displacement u by 

∇u = (∇u ) el + γ in 	 (1) 

in which ( ∇u ) el is the elastic part of the displacement gradient. 

The displacement field u is assumed to be sufficiently smooth, 

such that curl ∇u = 0 in 	, and the plastic deformation is assumed 

to be isochoric, so that tr γ = 0 . The total strain, Nye’s dislocation 

density tensor ( Nye, 1953; Fleck and Hutchinson, 1997; Arsenlis 

and Parks, 1999 ), the plastic strain, and the plastic spin are, re- 

spectively, defined as: 

ε = sym ∇u , α = curl γ , ε 

p = sym γ , ϑ 

p = skw γ in 	

(2) 

2.1.2. Balance equations 

For the whole body free from standard body forces, the conven- 

tional balance equation reads 

div σ = 0 in 	 (3) 

with σ denoting the standard symmetric Cauchy stress. 
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