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a b s t r a c t 

A continuum model is developed for hexagonal lattices, composed of a set of masses connected by lin- 

ear axial and angular springs, with nonlinearity arising solely from geometric effects. For a set of lattice 

parameters, these lattices exhibit complex deformation patterns under uniform loading conditions due to 

instabilities. A continuum model accounting for these instabilities is developed from explicit expressions 

of the potential energy functional of a unit cell. This functional is non-convex, it captures the bistable 

nature of the lattice, and is used to derive its effective constitutive behavior. Finite element simulations 

of continuum medium illustrate the formation of microstructural patterns with discontinuous displace- 

ment gradients, similar to the features observed in nonlinear elasticity and finite deformation plasticity. 

A comparison of discrete lattice simulations and finite element analysis under general loading conditions 

illustrates that the continuum model captures the effective behavior due to instabilities within the lattice. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The physics of lattice-based material models has been an active 

area of research for the past few decades. These models are used to 

study a wide range of physical phenomena, from atomic models of 

materials ( Keating, 1966 ) to truss structures ( Wadley et al., 2003 ) 

to granular media ( Cundall and Strack, 1979 ). In recent years, fo- 

cus has been placed on designing tailored lattices for attaining 

specific objectives ( Evans et al., 2001 ) such as lightweight, heat 

dissipation and multifunctionality. There have primarily been two 

approaches for modeling lattices. The first approach, pioneered 

by Gibson et al. (1982) ; Gibson and Ashby (1997) , models lat- 

tice materials as slender beams and has been applied extensively 

to study two-dimensional (2 D ) hexagonal, square and chiral lat- 

tice topologies. The second approach considers lumped parame- 

ter models consisting of spring networks and point masses. In 

this category, the Kirkwood-Keating model ( Kirkwood, 1939 ) has 

been extensively used, for example, to study properties of polymer 

molecules ( Tasumi et al., 1962 ), atomic lattices ( Rücker and Meth- 

fessel, 1995 ), and percolation in elastic media ( Kantor and Web- 

man, 1984 ). 

Buckling and instabilities arising in lattices undergoing large de- 

formations have been extensively studied. Ohno et al. (2002) de- 

rived conditions for the onset of microscopic bifurcation in finite 

deformation lattices based on the principle of virtual work. The 

∗ Corresponding author. 

E-mail address: rimoli@gatech.edu (J.J. Rimoli). 

authors illustrated numerically that the superposition of buckling 

modes can result in complex patterns. Triantafyllidis and cowork- 

ers ( Geymonat et al., 1993; Triantafyllidis and Bardenhagen, 1996; 

Triantafyllidis and Schnaidt, 1993; Triantafyllidis and Schraad, 

1998 ) applied Bloch analysis to investigate the onset of bifurca- 

tion by examining the tangent stiffness matrix of a unit cell repre- 

sentative volume element (RVE). A number of approaches ( Vigliotti 

and Pasini, 2012; 2013 ) have been developed for homogenization 

of lattices to determine their effective mechanical properties at the 

continuum level. Asada et al. (2009) ; Okumura et al. (2004) de- 

veloped a two-scale homogenization procedure to study micro- 

scopic buckling and post-buckling behavior of periodic elastoplas- 

tic cellular solids, Tadmor et al. (1999) developed homogenization 

of three-dimensional (3 D ) atomic lattices with convex potentials 

to derive bulk properties and behavior of materials. Arroyo and 

Belytschko (2002) extended this method to model thin sheets of 

atoms undergoing bending and stretching and applied it to study 

graphene sheets and carbon nanotubes. Although the potentials 

used in molecular dynamics simulations are convex, loss of el- 

lipticity leading to material instability, can arise due to large de- 

formation geometric nonlinearity. Later, ( Arroyo and Arias, 2008 ) 

incorporated an equivalent beam model with non-convex strain 

energy functional into their framework to model the wrinkling 

phenomena observed experimentally in thick carbon nanotubes. 

Miehe et al. (2002) developed a homogenization procedure for 

periodic composites undergoing large deformations and exhibit- 

ing both structural (buckling) and material (due to non-convexity) 

instabilities. 
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Non-convex strain energy functionals arise in nonlinear elas- 

tic media ( Ball and James, 1987 ) and their study has sup- 

ported the investigation of phase transitions in shape memory al- 

loys ( Bhattacharya, 1993; 2003 ) and in finite deformation plasticity, 

where microstructure forms patterns minimizing the overall en- 

ergy of the structure. Examples include internally twinned marten- 

site ( Ball and James, 1987 ), shear and slip bands ( Aifantis, 1987 ), 

laminate micro-structures ( Dmitrieva et al., 2009 ), and Lüders 

bands ( Mesarovic, 1995 ). These patterns feature layers of homo- 

geneous deformation regions which can range from atomistic (slip 

in crystalline materials) to macroscopic (kink bands in sheets of 

paper ( Hunt et al., 20 0 0 )), to geological scales (chevron folds in 

rocks ( Conti and Hackl, 2015 )), and play a key role in the me- 

chanical behavior of the medium by influencing material proper- 

ties across the length scales. 

In the discrete domain, non-convex potentials also occur in the 

case of bistable lattices, which have been a subject of recent inter- 

est due to their suitability for the development of diverse engineer- 

ing applications, including tunable metamaterials ( Schaeffer and 

Ruzzene, 2015 ), smart morphing structures ( Schultz, 2007 ), and 

deployable shells and structures ( Schioler and Pellegrino, 2007 ). 

Although some research has been conducted on the mechanics 

of one-dimensional (1 D ) bistable lattices, e.g., ( Cherkaev et al., 

2005; Restrepo et al., 2015 ), limited attention has been devoted to 

models and guidelines for higher dimensional bistable lattices. An 

interesting example in this category is the 2 D hexagonal lattice, 

which is topologically equivalent to the re-entrant configuration. 

Though the stability and linearized small deformation behavior 

of both these lattices have been investigated extensively ( Ostoja- 

Starzewski, 2002 ), there is a paucity of works in the literature 

demonstrating the mechanics of transition from one configuration 

to the other. 

In the present work, we develop a constitutive model for lat- 

tices capable of transforming from the hexagonal to the re-entrant 

configuration, and adopt it to demonstrate parallels between insta- 

bilities in discrete lattices and microstructural patterns in contin- 

uum media governed by non-convex potentials. The lattice is mod- 

eled as a network of linear axial and angular springs, undergoing 

large deformations. We illustrate how non-convex potential energy 

functionals and complex phenomena like snap-through instability 

can arise solely as a consequence of geometric nonlinearity. More- 

over, these functionals lead to complex patterns in finite discrete 

lattices and microstructure features in the corresponding homoge- 

nized continuum medium. We demonstrate the applicability of the 

homogenization approach to study large lattice structures using fi- 

nite element methods. 

The outline of the paper is as follows: In Section 2 , the lattice 

is described along with numerical simulations illustrating key phe- 

nomena. Next, an analytical solution for the potential energy func- 

tional of a lattice unit cell is derived. In Section 3 , homogenized 

constitutive law for an equivalent hyper-elastic material are de- 

rived using this potential energy functional. Section 4 presents the 

behavior of large finite lattices and compares with the response 

of equivalent continuum media. Multiple examples are presented 

demonstrating the ability of the homogenization procedure to pre- 

dict the behavior of the lattice under complex loading conditions. 

Finally, the key findings of this work are summarized in Section 5 , 

which also outlines directions of future research. 

2. Discrete lattice under finite deformation 

We consider lattices that are hexagonal in their un-deformed 

configuration. The lattices have the ability to deform and transition 

to the topologically equivalent re-entrant configuration. Fig. 1 (a) 

and (b) illustrate, respectively, the schematic of a hexagonal and 

a re-entrant cell configuration. Note that our un-deformed lattice 

only exhibits 4-fold rectangular symmetry as opposed to the 6-fold 

symmetry associated with a regular hexagonal lattice. The config- 

uration is called hexagonal when all the interior angles are greater 

than π /2 and is termed re-entrant when atleast one interior angle 

is less than π /2. For a certain set of lattice parameters and a range 

of strain values, we demonstrate that complex patterns form in the 

interior of a finite sized lattice even when subjected to affine de- 

formation at the boundary. The description of these patterns form 

the motivation for developing a continuum model and this model 

is intended to capture the effective behavior of the lattice when 

these patterns arise. In this section, we first introduce the lattice 

and its non-dimensional parameters. We then illustrate through 

numerical simulations typical behaviors associated with these lat- 

tices, which serve to motivate the development of our continuum 

model. 

2.1. Lattice configuration 

The system under study is a planar 2 D hexagonal lattice net- 

work, composed of a collection of M nodes, connected by N edges. 

Each interior node is connected by 3 edges to adjacent nodes and 

each boundary node is connected by 2 edges, which ensures that 

there are no hanging nodes in the lattice. The nodes have point 

masses, while the edges are massless linear springs that resist the 

change in length of the edge. In addition, angular springs at the 

nodes resist relative angular motion of every two adjacent edges 

connected at the node. All the axial springs have identical un- 

deformed lengths L . Both the axial and angular springs are un- 

deformed in the hexagonal lattice configuration. We assume that 

all the springs have identical axial and angular stiffness, denoted 

k a and k t , respectively. The degrees of freedom of the lattice are 

the nodal coordinates { x i = (x i , y i ) : i = 1 , 2 , . . . , M} . 
Consider two edges p and q spanned by nodes ( i, j ) and ( i, k ), 

respectively, with a common node i shown in Fig. 1 . The angle 

θ i 
pq between the edges is related to the degrees of freedom by the 

kinematic relation: 

cos (θ i 
pq ) = 

(x i − x j , x i − x k ) 

| x i − x j || x i − x k | , (1) 

where (., .) and |.| denote, respectively, the scalar product and l 2 

norm of the vectors. Let �θ i 
pq denote the change in this angle be- 

tween edges ( p, q ) and let �L m 

i j 
be the change in length of an axial 

spring on edge m connecting nodes i and j , expressed as: 

�L m 

i j = | x i − x j | − L. (2) 

The potential energy of the lattice is given by 

E = E a + E t = 

N ∑ 

m =1 

1 

2 

k a (�L m 

i j ) 
2 + 

M ∑ 

i =1 

∑ 

e = p,q 

1 

2 

k t (�θ i 
pq ) 

2 , (3) 

where the first term is the energy associated with the axial 

springs, with the index m summing over all the edges of the lat- 

tice and ( i, j ) are the nodes spanning edge m . The second term is 

the energy from the angular springs, with index i summing over 

the nodes and index e summing over all adjacent pairs of edges ( p, 

q ) at node i . It is observed that the energy is frame invariant and 

does not change under rigid translations and rotations. Thus, it can 

be used to study large displacement effects. 

For a prescribed set of boundary conditions, a stable equilib- 

rium configuration is obtained by minimizing the energy E with 

respect to the degrees of freedom, i.e., the position of the uncon- 

strained nodes. Since the problem is nonlinear, there is a possibil- 

ity of multiple stable and unstable equilibrium configurations. The 

specific configuration attained depends on the particular loading 

path imposed on the lattice. We express all physical quantities in 

non-dimensional form by normalizing the position vectors x by L , 
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