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a b s t r a c t 

A Hamiltonian state space approach for analytic determination of deformation and stress fields in multi- 

layered cross-ply symmetric laminates under extension and bending is presented, in which the equations 

of anisotropic elasticity, the end conditions, the traction-free boundary conditions on the bounding planes 

of the rectangular section, and the interfacial continuity conditions in multilayered laminates are satis- 

fied, regardless of the number of layers. The solutions serve as useful benchmarks for numerical modeling 

and material characterization of composite laminates. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

This study develops an effective and systematic approach for 

analytic determination of deformation and stress fields in multi- 

layered composite laminates, which is important in experimentally 

determining the lamina properties and verifying numerical models. 

Although this class of problems has been studied for many years 

( Aghdam and Falahatgar, 2003; Andakhshideh and Tahani, 2013; 

Becker, 1993; Chang and Tarn, 20 07; Cho and Kim, 20 0 0; Dong 

and Goetschel, 1982; Han et al., 2014; Kassapoglou and Lagace, 

1987; Tahani and Asghar, 2003; Zhang et al., 2006 ), with works 

proposing both numerical and analytical solutions based on various 

approximations and simplifications, to the best of our knowledge, 

there are few exact analyses for extension and bending of compos- 

ite laminates in the literature. Analyses of these problems using 

the conventional approach find it difficult to satisfy the interfacial 

continuity conditions and the edge boundary conditions. It is thus, 

often necessary to relax either the exact edge boundary conditions 

or the interfacial continuity conditions or both. For example, on the 

basis of the classical lamination theory (CLT) and various higher- 

order theories ( Christensen, 1979; Jones, 1975 ) such as the first- 

order shear deformation (FSDT) and the higher-order shear defor- 

mation theory (HSDT), the through-thickness variation of the dis- 

placement is assumed, and they did not discuss the interfacial con- 
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tinuity conditions and the traction-free boundary conditions at the 

free edges. The traction-free boundary conditions along the edges 

require the stresses vanish point by point on the edge surfaces, and 

these conditions are difficult to satisfy exactly. One must then re- 

sort to Saint-Venant’s principle to replace the edge conditions by 

equivalent ones, such that the stress resultants across the thick- 

ness are equal to zero at the free edge. The solutions thus obtained 

are considered to be valid away from the edge surfaces ( Mian and 

Spencer, 1998; Rogers et al., 1992; Tarn and Huang, 2002; Wang 

et al., 20 0 0 ). 

An exact analysis is possible only for limited cases. Pagano 

(1969 , 1970 ) presented the well-known analytic solutions on bend- 

ing of simply-supported symmetric cross-ply laminates. Wang and 

Choi (1982a , 1982b ) determine the order of stress singularities 

near the free edges using Lekhnitskii’s stress potentials and as- 

suming power-law for the stresses. The particular solution of the 

governing equations was obtained by assuming a cubic polyno- 

mial, whereas the homogeneous solution was expanded as an in- 

finite series of eigenfunctions. Free parameters in the eigenfunc- 

tions were then computed by a boundary collocation method to 

satisfy the remote boundary conditions. Ren (1987) presented ex- 

act solutions in terms of Fourier series and an Airy stress func- 

tion for laminated cylindrical shells in cylindrical bending under 

plane strain conditions. Noor and Burton (1990) expressed the six 

stress components and the three displacement components of the 

three-dimensional elasticity in terms of a double Fourier series 

in the Cartesian coordinates, and presented the stress and free 

vibration problems of simply-supported antisymmetric laminate. 
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Fig. 1. The free-edge problem for a composite laminate of rectangular section subjected to an axial force P , a bending moment M 1 and a torque M t at the end sections. 

Savoia and Reddy (1992) assumed a displacement field and solved 

the three-dimensional plate problem by minimizing the total po- 

tential energy functional, and solutions for cross-ply and antisym- 

metric angle-ply laminated plates had been presented. Heyliger 

(1997) presented some exact solutions for the static behavior of 

piezoelectric laminate with simply support subjected to transverse 

loadings. Batra and Liang (1997) used the three-dimensional lin- 

ear elasticity to analyze the steady-state vibrations of a simply- 

supported rectangular laminated plate with embedded PZT layers. 

Werner (1999) presented a Navier-type three-dimensional exact 

solution for small deflections in bending of linear elastic isotropic 

homogeneous rectangular plates. Pan (2001) derived exact solu- 

tions for three-dimensional, linearly magneto-electro-elastic, and 

rectangular plates under static loadings. The solutions are ex- 

pressed in terms of the propagator matrix and include all the pre- 

vious solutions. Meyer-Piening (2004) presented a sandwich plate 

bending analysis on the basis of the three-dimensional elastic- 

ity. Zenkour (2007) analyzed the bending problem of symmetric 

and antisymmetric simply supported cross-ply laminates using the 

three-dimensional elasticity and the state space concept. Williams 

(1999) developed a multiscale theory for analyzing the history- 

dependent response of laminated plates. Demasi (2007 , 2010 ) de- 

veloped a Navier-type method by using the mixed form of Hooke’s 

Law which leads to formulating the boundary conditions on the 

top and bottom surfaces of the plate directly in terms of trans- 

verse stresses, and presented an exact three-dimensional solution 

for isotropic and orthotropic simply-supported rectangular plates. 

In the above cited solutions, the three-dimensional linear theory 

of elasticity are used, and the components of displacement, stress, 

and electric displacement are expressed in the form of a double 

Fourier series, so that the solutions are mainly suitable for the case 

of simply-supported boundary conditions of laminated rectangular 

plates subjected to a sinusoidally/uniformly distributed load. 

Using the theory of anisotropic elasticity, Tarn and Chang 

(2013) formulated the basic equations of anisotropic elasticity and 

piezoelasticity into the state space framework by a Hamiltonian 

variation formulation. Based on the Hamiltonian state space for- 

malism, the present study derives the analytic solutions for ex- 

tension and bending of symmetric cross-ply laminates without a 

priori assumptions. Guided by previous study ( Liang et al., 2014 ), 

we seek the eigensolutions in the form of exponential functions 

of the distance from the edges in the finite cross section of the 

plate, where the transfer matrix is employed to satisfy the interfa- 

cial continuity and boundary conditions. Regardless of the num- 

ber of layers, the approach requires only a systematic operation 

of 4 × 4 matrices. The solutions obtained herein are exact in 

that the displacement and stress fields satisfy the basic equations 

of anisotropic elasticity, the free-edge boundary conditions, the 

traction-free boundary conditions on the top and bottom planes, 

the end conditions, and the interfacial continuity conditions in 

multilayered composite laminates. Comparisons of the stress fields 

between the proposed analytic and finite element solutions show 

good agreement. The presented elasticity solutions are important 

because they can be used to study the boundary-layer effects of 

composite laminates, in addition to serving as benchmarks for the 

evaluation of numerical solutions for the layered composite struc- 

tures. 

The main process of the present approach can be organized as 

follows: 

1. Formulate the state space equations on the basis of the three- 

dimensional elasticity. 

2. Determine a particular solution which satisfies the nonhomo- 

geneous state space equations, the interfacial continuity con- 

ditions, and the boundary conditions on the top and bottom 

planes. 

3. Determine an eigensolution which satisfies the homogeneous 

term of the state space equations, the interfacial continuity 

conditions, and the boundary conditions on the top and bottom 

planes. 

4. Add the eigensolution to the particular solution, and satisfying 

the free-edge conditions on the left and right planes by using 

the symplectic orthogonality of the eigenvector. 

2. Problem statement 

Consider a symmetric composite laminate composed of m 

anisotropic elastic layers of the rectangular section subjected to 

an axial force, a bending moment and a torque at the end sec- 

tions, as shown in Fig. 1 . Using Cartesian coordinates ( x 1 , x 2 , x 3 ), 

the origin is located at the center of the middle plane. The x 2 -axis 

is pointing in the thickness direction such that the top and bot- 

tom planes and the interfaces between adjacent layers are defined 

by x 2 = constant . The top and bottom planes, the free-edge bound- 

aries, and the end sections are defined by x 2 = ±h/ 2 , x 1 = ±a/ 2 

and x 3 = 0 , l , respectively. Following Chang and Tarn (2007) , the 

three-dimensional equations of the elasticity can be expressed in 

matrix forms as follows. 

Generalized Hooke’s law: [ 

σ1 

σ2 

σ3 

] 

= 

[ 

C 11 C 12 C 13 

C 21 C 22 C 23 

C 31 C 32 C 33 

] [ 

ε 1 

ε 2 

ε 3 

] 

, (1) 

where σ i denotes the stress vector in the x i direction, ε i consists 

of the corresponding strain components, and C ij are matrices of the 

elastic constants given below, 

σi = [ σ1 i σ2 i σ3 i ] 
T , ε i = [ ε 1 i ε 2 i ε 3 i ] 

T , 

C 21 = C 

T 
12 , C 31 = C 

T 
13 , C 32 = C 

T 
23 , 

C 11 = 

[ 

c 11 c 16 c 15 

c 16 c 66 c 56 

c 15 c 56 c 55 

] 

, C 12 = 

[ 

c 16 c 12 c 14 

c 66 c 26 c 46 

c 56 c 25 c 45 

] 

, 

C 13 = 

[ 

c 15 c 14 c 13 

c 56 c 46 c 36 

c 55 c 45 c 35 

] 

, C 22 = 

[ 

c 66 c 26 c 46 

c 26 c 22 c 24 

c 46 c 24 c 44 

] 

, 

C 23 = 

[ 

c 56 c 46 c 36 

c 25 c 24 c 23 

c 45 c 44 c 34 

] 

, C 33 = 

[ 

c 55 c 45 c 35 

c 45 c 44 c 34 

c 35 c 34 c 33 

] 

. 
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