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a b s t r a c t 

In an influential study on the micromechanical origin of stress transmission in granular materials, Radjaï

et al. (1998) have proposed a division of the network of interparticle contacts into ‘weak’ and ‘strong’ 

contacts. This division is based on a comparison of the force at contacts with the average (over all con- 

tacts) force. They observed, from the results of a two-dimensional computer simulation of the behaviour 

of a system of particles, that the shear stress of the granular material is mainly carried by the strong 

contacts and that the anisotropy in the orientational distribution of the weak contacts is in the direction 

perpendicular to that of the full contact network. 

These findings are analytically predicted here in a qualitative sense, within a statistical framework 

that is based on a simple, self-similar expression for the conditional probability function for the normal 

force at contacts with given contact orientation. 

An alternative definition of weak and strong contacts is proposed here, in which the division of the 

contacts is based on a comparison of the force at contacts with the average force corresponding to the 

contact orientation. Contrary to the finding based on the definition of weak and strong contacts by Radjaï

et al. (1998), with this alternative definition the pressure and the shear stress are (almost) equally carried 

by the weak contact network. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Granular materials are systems consisting of a large number 

of particles with frictional interactions. Macroscopically, these sys- 

tems exhibit a shear strength that is pressure dependent. Conven- 

tionally, this is described by the Mohr–Coulomb yield criterion at 

the macroscopic, continuum scale. 

For granular materials consisting of stiff particles, the micro- 

scopic scale of interest is that of particles and interparticle con- 

tacts. Particles interact at these contacts through contact forces. In 

micromechanics of quasi-static deformation of granular materials, 

relationships are investigated between micro-scale characteristics 

of particles and contacts and macroscopic characteristics of stress 

and strain. 

An important characteristic at the microscopic scale of con- 

tacts is the distribution of contact orientations. Computer sim- 

ulations and results from experiments have demonstrated that 

this distribution is in general anisotropic (for example Biarez 

and Wiendieck, 1963; Oda, 1972a, 1972b, 1972c; Rothenburg and 

Bathurst, 1989 ), either due to the method of sample preparation 

(inherent anisotropy) or due to deformation (induced anisotropy). 

The micromechanical origin of stress transmission in granular 

materials has been investigated from a number of viewpoints. Ex- 
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periments using photo-elastic materials have demonstrated the im- 

portance of anisotropy at the microscopic scale in the distribution 

of contact orientations (for example Biarez and Wiendieck, 1963; 

de Josselin de Jong and Verruijt, 1969; Drescher and de Josselin 

de Jong, 1972; Oda, 1972a, 1972b, 1972c; Majmudar and Behringer, 

2005 ). Rothenburg and Bathurst (1989) developed the stress–

force–fabric relationship, which gives a quantitative relationship 

between macroscopic shear strength and microscopic anisotropies 

in contact orientations and in contact force distributions. Sub- 

sequent further developments of stress–force–fabric relationships 

have been reported by Ouadfel and Rothenburg (2001), Li and Yu 

(2013) and Azéma et al . (2013) . A different, influential viewpoint 

on stress transmission in granular materials has been proposed by 

Radjaï et al. (1998) . This viewpoint forms the focus of the current 

study. 

Radjaï et al. (1998) have proposed to divide the set of interpar- 

ticle contacts into two disjoint subsets, the ‘weak’ and the ‘strong’ 

contact networks. The weak contacts are defined as those contacts 

c at which the normal force f c n is smaller than a threshold value 

that depends on the average (over all contacts) normal force F̄ . For 

strong contacts c , the normal force f c n is larger than the average 

normal force F̄ . Thus 

Weak contacts : f c n ≤ ξ F̄ Strong contacts : f c n > ξ F̄ (1) 

Here ξ is a dimensionless parameter through which a subset of 

contacts is identified. 
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Based on results of a two-dimensional computer simulation of 

the behaviour of a system of particles, Radjaï et al. (1998) noted 

that: 

1. The shear stress of the granular material is largely determined 

by the contributions of the strong force network. 

2. The direction of anisotropy of the weak contact network is per- 

pendicular to the direction of anisotropy of the full contact 

network. 

3. Interparticle friction is mostly activated at weak contacts. Al- 

though Radjaï et al. (1998) relate the mobilisation of friction di- 

rectly to dissipation, such a relation is more complex (see Kruyt 

and Rothenburg, 2006 ). 

An objective of the current study is to provide an explanation of 

the first two findings, based on fairly weak assumptions that allow 

for analytical considerations. 

Besides the strong and weak contact network of Radjaï et al. 

(1998) , alternative contact networks have been proposed (see for 

example Kruyt and Antony, 2007; Tordesillas and Muthuswamy, 

2009; Hunt et al., 2010 ). 

The overview of this study is as follows. The relevant basics of 

micromechanics of granular materials are summarised in Section 2 . 

The first two findings of Radjaï et al. (1998) are explained within 

a statistical framework for the contact forces in Section 3 . An 

alternative definition of weak and strong contact networks is 

proposed in Section 4 . Finally, findings of this study are discussed 

in Section 5 . 

2. Micromechanics 

For two particles p and q that are in contact, the vector from 

the centre of particle p to the centre of particle q is the branch vec- 

tor l pq . The unit vector corresponding to the branch vector is the 

contact normal n 

pq . In the two-dimensional case considered here, 

the orientation θ c of a contact c is the angle of the contact normal 

vector n 

c with respect to a reference direction. 

Statistical properties of the contact orientations θ c can be de- 

scribed by a fabric tensor (for example Satake, 1978; Kanatani, 

1984 ) or by the contact distribution function E ( θ ) ( Horne, 1965 ). 

The contact distribution function E ( θ ) gives the probability that for 

an arbitrary contact c its orientation θ c lies in an interval of width 

�θ around orientation θ

E ( θ ) �θ = Prob 

[
θ − �θ

2 

< θ c < θ + 

�θ

2 

]
(2) 

The force exerted by particle q on particle p is denoted by f pq . 

In the two-dimensional case, the force vector f c at a contact c can 

be decomposed into scalar normal and tangential components, f c n 

and f c t respectively. 

The expression for the average Cauchy stress tensor σ , in terms 

of contact force vectors f c and branch vectors l c , is given by (for 

example Drescher and de Josselin de Jong, 1972; Kruyt and Rothen- 

burg, 1996 ) 

σi j = 

1 

A 

∑ 

c∈ C 
f c i l 

c 
j (3) 

where the summation is over contacts c in the set of contacts C 

that are present in the region of interest with area A (in the two- 

dimensional case considered here). 

By grouping contacts with similar contact orientations, the dis- 

crete sum in Eq. (3) can be converted to an integral involving the 

contact distribution function E ( θ ) ( Rothenburg and Bathurst, 1989 ) 

σi j = m A 

∫ 2 π

0 

E(θ ) f i l j (θ ) dθ (4) 

where m A = N cont /A is the contact density (i.e. the number of 

contacts per unit area) and φ̄(θ ) denotes the average of an ar- 

bitrary contact quantity φc over contacts with similar contact 

orientations θ . 

Eq. (4) can be simplified by adopting two assumptions that 

have been verified by Rothenburg and Bathurst (1989) . Firstly, it 

is assumed that the contact force vector f c and the branch vec- 

tor l c are uncorrelated, i.e. f i l j (θ ) ∼= 

f i (θ ) l j (θ ) . Secondly, for disk- 

shaped particles as considered here, the average branch vector is 

given by l j (θ ) ∼= 

D̄ n j (θ ) where D̄ is the average particle diameter. 

With these assumptions, Eq. (4) can be simplified to 

σi j = m A ̄D 

∫ 2 π

0 

E ( θ ) f i ( θ ) n j ( θ ) dθ (5) 

3. Analysis of findings by Radjaï et al. (1998) 

The analysis by Radjaï et al. (1998) of the stress tensor σ is 

based on a division of the contact into weak and strong contacts, 

depending on the magnitude of the normal force f c n . Here this con- 

cept is formally described by a probability density function for 

the contact forces. To emphasise the main ideas and to allow for 

simple analytical developments, the contribution of the tangen- 

tial forces f c t to the stress tensor is neglected here. Rothenburg 

and Bathurst (1989) have shown that the contribution of tangential 

forces to the macroscopic shear strength is not dominant. 

The joint probability density function P ( f n , θ ) describes the 

probability that for an arbitrary contact c its contact normal force 

f c n lies within an interval of width �f n around f n and its contact 

orientation θ c lies within an interval of width �θ around θ . Thus 

Prob 

[
f n − � f n 

2 

< f c n < f n + 

� f n 

2 

, θ − �θ

2 

< θ c < θ + 

�θ

2 

]
= 

P ( f n , θ ) � f n �θ (6) 

Alternatively, a conditional probability density function P ( f n | θ ) 

can be defined that gives the conditional probability that for a con- 

tact c whose contact orientation θ c lies within an interval of width 

�θ around θ , its contact normal force f c n lies within an interval of 

width �f n around f n . Thus 

Prob 

[
f n − � f n 

2 

< f c n < f n + 

� f n 

2 

∣∣∣∣θ − �θ

2 

< θ c < θ + 

�θ

2 

]
= 

P ( f n | θ ) � f n �θ (7) 

The joint and conditional probability density functions, P ( f n , θ ) 

and P ( f n | θ ) respectively, are related by 

P ( f n , θ ) = E ( θ ) P ( f n | θ ) (8) 

Since P ( f n | θ ) is a (conditional) probability density function, it 

must satisfy the normalisation condition for probabilities 

1 = 

∫ ∞ 

0 

P ( f n | θ ) d f n (9) 

In terms of the conditional probability density function P ( f n | θ ), 

the average normal force f n (θ ) for contacts with orientation θ is 

given by 

f n ( θ ) = 

∫ ∞ 

0 

f n P ( f n | θ ) d f n (10) 

The average, over all contacts, normal force F̄ is then given by 

F̄ = 

∫ 2 π

0 

E ( θ ) f n ( θ ) dθ (11) 

In biaxial and isobaric tests the contact distribution function 

E ( θ ) and the average normal force f n (θ ) are well described by a 
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