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a b s t r a c t 

In the present paper, the adhesive contact between a rigid sphere and a compliant elastic substrate with 

surface tension is analyzed. Using the minimum potential energy principle and considering both the ef- 

fects of surface tension and adhesion, explicit solutions are obtained for the contact radius and the indent 

depth for the case without external loading. It is found that surface tension evidently alters the pressure 

distribution in the contact region and tends to decrease both the contact radius and the indent depth. 

The present model establishes a bridge between the JKR model for adhesive contact problems and the 

Young - Laplace’s law of surface tension. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Contacts between solid surfaces are not only ubiquitous in na- 

ture but also a major concern in engineering. The classical Hertzian 

solution for non-adhesive elastic contact problems assumes that 

the interaction in the whole contact region is compressive ( Hertz, 

1882 ). However, when two solid surfaces are brought into close 

proximity, such molecular interactions as van der Waals forces 

may lead to attractive adhesion between the two surfaces. Bradley 

(1932) adopted the Lennard - Jones potential to describe the ad- 

hesive force between two rigid spheres. Through the balance be- 

tween the stored elastic strain energy and surface energy, Johnson 

et al. (1971) formulated the well-known JKR adhesive contact 

model, which predicts infinite tensile traction at the contact edge. 

Derjaguin et al. (1975) presented an alternative adhesive contact 

model, in which the contact profile remains the same as that in 

the Hertzian model and an additional attractive force acts outside 

the contact region. Using the Dugdale model to characterize the 

attractive force, Maugis (1992) developed a more general theory to 

describe the transition between the JKR and DMT models. 

The JKR model has been the fundament for the analysis of con- 

tact problems at micro and nano scales. However, the results of the 

JKR model have a distinct deviation from the recent experiments 

of the adhesive contact between micro/nano-sized hard particles 

and soft substrates ( Rimai et al., 20 0 0; Chakrabarti and Chaud- 

hury, 2013 ). For sufficiently small particles and soft substrates, 
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Style et al. (2013) reported that the adhesion mimics the adsorp- 

tion of particles on a liquid surface due to surface tension. 

To address the influence of surface stress in solids, Gurtin and 

Murdoch (1975) and Gurtin et al. (1998) established a surface elas- 

ticity theory. This theory has been used in micromechanics to an- 

alyze the elastic field around nanosized inhomogeneities ( Sharma 

et al., 2003; Lim et al., 2006 ) and the effective elastic moduli of 

nano-composites ( Duan et al., 2005; Gao et al., 2006 ). Huang and 

Wang (2006) formulated the theory of surface elasticity at finite 

deformation, and then Huang and Sun (2007) gave a linear ver- 

sion of it and applied the linear theory to study the effective elas- 

tic constants of nano-composites. Their work is advantageous to 

address the effect of residual surface stress, which has long been 

ignored. 

The influence of surface tension on non-adhesive contact has 

attracted considerable attention in recent years. To evaluate the 

elastic modulus of inflated lobes of lung, Hajji (1978) studied the 

axisymmetric indentation on an elastic half space with a pre- 

stressed membrane. Using the surface elasticity theory, He and 

Lim (2006) and Huang and Yu (2007) derived the three- and two- 

dimensional surface Green’s functions, respectively. Through the 

Fourier integral transformation method, Wang and Feng (2007) 

solved the elastic field induced by a concentrated force acting on a 

half plane with surface tension. Using Stroh’s formulism, Koguchi 

(2008) obtained the surface Green’s function for an anisotropic 

half space with surface effects. Chen and Zhang (2010) presented 

the surface Green’s function for anti-plane shear deformation. Gao 

et al. (2013) investigated the Boussinesq problem with both sur- 

face tension and surface elasticity, showing a dominant influence 

of surface tension over surface elasticity under normal loading. 
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Fig. 1. Adhesive contact between a rigid sphere and an elastic half space. 

Recently, the effects of surface tension on adhesive contact have 

also been addressed. Salez et al. (2013) studied the adhesion of 

a spherical elastic particle on a rigid substrate and established a 

bridge between the JKR and Young - Dupre asymptotic regimes. Gao 

et al. (2014) analyzed the surface effects on adhesive contact by as- 

suming that the pressure within the contact region takes the same 

form as that in the JKR model. Using the finite element method 

with the incorporation of surface tension, Xu et al. (2014) ad- 

dressed the adhesion between a rigid sphere and a compliant elas- 

tic half space under finite deformation. Recently, Hui et al. (2015) 

studied the influence of surface tension on the no-slip adhesive 

contact between a rigid sphere and an incompressible isotropic 

elastic substrate. In this significant work, the energy release rate 

in fracture mechanics was adopted and calculated by the conven- 

tional compliance approach. They gave the contact radius and the 

indent depth in an implicit form. This problem is reconsidered 

in the present paper in order to give a simple and explicit solu- 

tion. By using the minimum potential energy principle, we present 

a straightforward method to solve the adhesive contact problem 

with surface tension. The explicit expressions of the contact ra- 

dius and the indent depth are given, which are more convenient 

in practical applications. 

2. Adhesive contact with surface tension 

Consider the adhesive contact between a rigid sphere with ra- 

dius R and an isotropic elastic half space, as shown in Fig. 1 . Refer 

to the Cartesian coordinate system ( r, z ), where the origin O is lo- 

cated at the initial contact point, the r axis along the initial surface 

of the half space, and the z axis perpendicular to the surface. In 

the absence of external load, the contact is driven by the adhesion 

between the rigid sphere and the elastic half space, and resisted 

by surface tension and the strain energy. Let δ denote the indent 

depth and a the contact radius in the equilibrium state. 

For the considered axisymmetric problem, we express the pres- 

sure within the contact region as p ( t ), where t is the distance from 

the origin. By using the solution of a point load acting on an elas- 

tic half space with surface tension ( Hajji, 1978 ), the displacement 

boundary condition within the contact region can be described by 

an integral equation 

1 
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, (1) 

where H n and Y n are the Struve function and Bessel function of the 

second kind of order n, l = ( r 2 + t 2 –2 rt cos θ ) 1/2 , τ 0 is the substrate- 

air surface tension, E ∗ is the composite elastic modulus of the elas- 

tic half space, and 

s = 

2 τ 0 

E ∗
, (2) 

is an intrinsic material length indicating the influencing scope of 

surface tension ( Long and Wang, 2013 ). 

In the absence of external load, the resultant force within the 

contact region must vanish, that is, 
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Differentiating Eq. (1) with respect to r , one has 
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(4) 

Letting r = 0 in Eq. (1) , the indent depth is obtained as 

δ = 

π
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The elastic energy stored in the elastic half space can be calcu- 

lated by the contact pressure 

U el = 

1 
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)
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where A denotes the contact region and ū z is the normal displace- 

ment on the surface of the half space. 

Eqs. (4) and ( 3 ) can be normalized into the following forms 
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respectively, where 
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Using the Gauss - Chebyshev quadrature formula, Eqs. (7) and ( 8 ) 

can be written in the matrix form as ( Erdogan and Gupta, 1972 ) 

BQ = F , (13) 

where 

B = [ b i j ] , b i j = 

1 

n 
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1 

n 

, 
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T 
, 
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π
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, 
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n 
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(2 j − 1) π
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, i = 1 , 2 , . . . n − 1 , 

j = 1 , 2 , . . . n. (14) 

For a given value of contact radius a (or s ′ ), one can cal- 

culate the corresponding values of q ( t ′ j ) by solving the linear 
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