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a b s t r a c t

In this article, stress concentrations around cavities in 3D generally anisotropic bodies are investigated

using the boundary element method (BEM), where the associated volume integral is analytically

transformed to the boundary. All derivations are based upon the Fourier-series representations of the

fundamental solutions, including Green’s function of displacements and its derivatives. This approach of

analytical transformation has fully restored the BEM’s distinctive notion that only the boundary needs

to be discretized. The goal of the present work is to investigate the thermoelastic stress-concentration

around cavities in 3D anisotropic bodies by use of the analytically transformed boundary integral

equation (BIE). The work has fully recovered the BEM’s nature of boundary discretization for treating

3D generally anisotropic thermoelasticity. This is the first implemented work that successfully treats

thermoelastic problems for 3D generally anisotropic solids by the analytically transformed BIE. In the

paper, Interesting phenomena are observed from the analyses of stress concentrations around oblate

cavities and some discussions are made.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering practice, stress concentrations around cavities

often play a crucial role for the integrity of structures. In vari-

ous applications, anisotropic materials with cavities are often sub-

jected to thermal loads, resulting stress concentrations around the

cavities. For assessing the integrity of such applications, investi-

gation of thermoelastic stress concentrations around cavities in

anisotropic bodies appears to be an important topic.

Generally speaking, investigation of the phenomena can be per-

formed by experiments, analytical study, or numerical analysis.

Since there are too many works within this broad scope to cover

for a thorough review, only a few among them for the steady-

state are mentioned here as examples. Some early works can be

referred to Goodier and Florence (1959) and Florence and Good-

ier (1964), focusing on the localized thermal stress at holes, cavi-

ties and inclusions due to the disturbance of a uniform heat flow.

Some others (e.g. Hoffman and Ariman, 1970; Rao et al., 1971;

Matsumoto and Sekiya, 1982) have studied the thermal stresses

in thin elastic finite plates with insulated circular, elliptic, and

rectangular holes. Chao and Gao (2001) have studied the mixed
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boundary-value problems of two-dimensional anisotropic thermoe-

lasticity with elliptic boundaries. Despite its importance for funda-

mental studies, analytical analysis is only applicable to problems

with simple geometry and boundary conditions, especially for two-

dimensional cases. For problems with complicated boundaries in

general, the analysis will need numerical tools, such as the finite

element method (FEM) or the boundary element method (BEM).

In contrast with the domain solution techniques, the BEM is

well recognized as an efficient alternative to the more commonly

used FEM being a tool for engineering analysis. For linear elastic

solids, the analytical basis of the method is the boundary integral

equation (BIE) that relates the displacements and tractions on do-

main surface when thermal loads and body-force are absent. This

characterizes the BEM’s distinctive feature, namely only surface

modeling of the domain involved. In comparison with the domain

solution techniques, this boundary-discretized feature is even more

advantageous for analyzing stresses with rapid variations near the

cavity surface in anisotropic bodies. However, in the direct formu-

lation of BIE, thermal effects reveal themselves as a volume in-

tegral that conventionally requires "cell-discretization" throughout

the whole domain for its numerical integration. Apparently, such a

treatment not only is inefficient for numerical integrations but also

destroys the BEM’s distinctive notion that only the boundary needs

to be modeled.
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To avoid direct integration of this volume integral, several

techniques have been proposed over the years, including the

dual reciprocity method (e.g. Nardini and Brebbia, 1982), multiply

reciprocity method (e.g. Nowak and Brebbia, 1989), particular

integral approach (e.g. Deb and Barnerjee, 1990), and the exact

transformation method (ETM) (e.g. Rizzo and Shippy, 1977, among

others). Among these schemes, the ETM is the most appealing

since it restores the analysis to a purely boundary one without

invoking additional simplifications and/or numerical approxi-

mations unlike the others. For isotropic thermoelasticity under

steady state, this volume integral can be exactly transformed to

the boundary by the ETM in both 2D and 3D (e.g. Rizzo and

Shippy, 1977; Danson, 1983). However, extension of such trans-

formation towards the same end in the BEM analysis for 3D

generally anisotropic thermoelasticity has remained challenging

due to the mathematical complexity of the associated fundamental

solutions.

Over the past several decades, the topic of evaluating the fun-

damental solutions for 3D anisotropic elastic bodies has remained

a focus of investigation. In general, the methods for evaluation

of the Green’s function include the numerical integration method

(e.g. Fredholm 1900; Barnett, 1971; Wang, 1997; Wang and Denda,

2007), residue calculus method (e.g. Ting and Lee, 1997; Phan

et al., 2004, 2005; Lee, 2003, 2009; Buroni and Sáez, 2013), and

the Stroh formalism method.

For simplifying the evaluation process, Shiah (2014) employed

an approach re-expressing the fundamental solutions into the

forms of double Fourier series to study the inertial effects in

3D anisotropic solids. Following the success of implementing the

double-Fourier-series forms to BEM analysis, Shiah and Tan (2014)

found that the series expressions were very ideal to be applied to

deal with thermoelastic effects, too; however, no implementation

of that work was achieved at that time. In the present work, this

approach is to further extend the author’s previous work (2014) to

study the thermoelastic stress-concentration around cavities in 3D

generally anisotropic bodies. In the end, a few benchmark exam-

ples are presented.

2. Anisotropic thermoelasticity

For a generally anisotropic elastic solid, the constitutive rela-

tionship between the stress σ ij and the strain εij when tempera-

ture change � is also considered, is governed by the well-known

Duhamel–Neumann relation:

σi j = Ci jklεkl − γi j�, (i, j, k, l = 1, 2, 3), (1)

where cijkl and γ ij denote the elastic constants (stiffness coeffi-

cients) and thermal modulii, respectively, of the material. The stiff-

ness coefficients C to be used for our analysis are arranged in the

order according to

σ = (σ11, σ22, σ33, σ23, σ13, σ12)
T
, (2)

ε = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)
T
. (3)

For a generally anisotropic body, the thermal modulii in Eq. (1)

are given by

γi j = Ci jkl αkl, (4)

where αkl stands for the coefficients of thermal expansion. As in

the usual manner to treat steady-state sequentially coupled ther-

moelasticity, the resulting elastic field is determined from the tem-

perature distribution corresponding to the boundary conditions

prescribed for heat conduction analysis. For this, the thermal field

can be solved independently but must be first obtained before

solving the elastostatic problem.

Under the condition of steady state without heat source, the

anisotropic heat conduction is governed in the Cartesian coordinate

system by
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= 0 , (5)

where Kij are the conductivity coefficients.

Eq. (5) can be transformed to its canonical form of the Laplace

equation by a simple coordinate transformation (Shiah and Tan,

2014),

x̂T = F xT , (6)

where x̂ and x represent the transformed and the original coordi-

nates, respectively; F denotes the transformation matrix given by

F =
(√

�/K11 0 0
−K12/K11 1 0

β1 β2 β3

)
, (12)

where all the coefficients are defined by

� = K11K22 − K12
2
, (13a)

β1 = (K12K23 − K13K22)/
√

ω, (13b)

β2 = (K12K13 − K23K11)/
√

ω, (13c)

β3 = �/
√

ω, (13d)

ω = K11K13� − K11K12K2
13 + K11K12K13K23 − K2

23K2
11. (13e)

By the coordinate transformation, the original heat conduction

is now governed by the standard Laplace equation in the trans-

formed coordinate system as denoted by the underscore, i.e.

�,ii = 0. (14)

As a result, the thermal field can be determined using the stan-

dard boundary integral equation for the potential theory. Once the

temperature field in the body is determined via solving the BIE

for the mapped domain, the solution for the corresponding elas-

tic field of the solid body can then proceed.

3. The BIE for anisotropic thermoelasticity

As has been well established in the literature for the direct BEM

formulation, the displacements ui and the tractions ti at the source

point P and the field point Q on the surface S of an elastic body

are related by the following integral equation:

Ci j(P) ui(P) +
∫

S
ui(Q )T ∗

i j (P, Q )dS =
∫

S
ti(Q )U∗

i j(P, Q )dS

+
∫

V

Bi(q)U∗
i j(P, q) d�, (15)

where q is an arbitrary field point inside the domain �; Bi denotes

an effective body-force component due to the thermal and/or iner-

tia effects. It is evident that unless the last integral on the right

hand side of Eq. (15) is transformed to surface ones, its direct nu-

merical evaluation will require interior discretization of the whole

domain. Also in Eq. (15), U∗
i j

and T ∗
i j

are the fundamental solutions

for the displacements and tractions, respectively, in the ith direc-

tion at the field point due to a unit load in the jth direction at the

load point. As is well known in solid mechanics, thermal effects

can be treated as an equivalent body-force in the governing equa-

tions in elasticity. It can be easily established that Eq. (15) becomes
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