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a b s t r a c t

The paper presents a theoretical study on the distribution of polarization and mechanical stresses in the

flexoelectric layer accounting for the flexocaloric effect. It is assumed that the flexoelectric material has

neither piezoelectric nor electrostrictive properties. Particular attention is given to the boundary condi-

tions at the media interface. The analysis is carried out in the framework of a one-dimensional model. It

is demonstrated that the correct formulation of the boundary conditions requires to consider the square

of the deformation gradient. The presence of this term results in the existence of the boundary layer

at the flexoelectric interface, in which, according to our estimates, the deformation gradient can reach

106–107m−1.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Virtually all dielectrics can be polarized while being subjected

to an inhomogeneous deformation. This phenomenon, i.e. the re-

lation between the polarization and the deformation gradient, is

called flexoelectric effect (FEE) (Tagantsev, 1986). The effect is ver-

satile and, unlike to the piezoelectric effect, exists for crystals

of arbitrary symmetry. Despite the fact that FEE is known for a

very long time, see e.g., Tagantsev (1986), Gharbi et al. (2011),

Majdoub et al. (2008), Yudin and Tagantsev (2013), and has been

revealed not only in crystals but also in biological materials (Deng

et al., 2014b; Petrov, 2002), considerable interest in flexoelectrics

appeared mainly in the last decade. Such a tendency can be ex-

plained by the advent of nanostructured metamaterials (Ma et al.,

2011; Ma and Eric Cross, 2002; Sharma et al., 2010) with piezo-

electric properties due to FEE. In addition, the evaluation of the

flexoelectric coefficients derived by Kogan (1964) from theoretical

considerations was underestimated. Since the flexoelectric effect

is proportional to the dielectric constant (Kogan, 1964; Tagantsev,

1986), its highest values to be achieved for ferroelectrics. Experi-

ments conducted on ferroelectrics with perovskite structure have

shown that the measured value of FEE is three orders higher than

the theoretical estimate (Ma and Eric Cross, 2002; Zubko et al.,

2007). Moreover, the FEE should increase by reducing the size of
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the sample and can be very significant on the nanoscale. The enor-

mous impact of the flexoelectricity on the electric properties of

flexoelectric thin films was demonstrated by Catalan et al. (2004).

Consequently, flexoelectricity must be considered for the energy

harvesting applications (Deng et al., 2014a) and when calculating

the ferroelectric memory elements such as thin films, nanowires,

and nanodots (Eliseev et al., 2009). Finally, the temperature de-

pendence of the flexoelectric coefficients leads to the flexocaloric

effect, that is a temperature or entropy change of an inhomo-

geneously deformed sample under an electric field (Starkov and

Starkov, 2014). This effect is especially attractive for the creation

of the efficient solid-state cooling systems (Starkov et al., 2012).

The correct description of the finite size flexoelectric requires a

proper formulation of the boundary conditions on the surface of

the body. These conditions for the polarization were established a

long time ago (Eliseev et al., 2009; Indenbom et al., 1981). How-

ever, the modification of the usual elasticity boundary conditions

for the flexoelectric material was obtained only in 2011 (Yurkov,

2011). The paper of Liu (2014) helped to formulate the boundary

conditions for a variety of problems. The equations describing the

state of the flexoelectric are derived, as a rule, from variational

principles based on the condition of minimum of the thermody-

namic potential W (Eliseev et al., 2009; Sharma et al., 2010; Yudin

and Tagantsev, 2013; Yurkov, 2011). The boundary conditions, ac-

cording to the calculus of variations, shall be determined by the

same potential W (Gelfand and Fomin, 2000). Unfortunately, most

of the works dedicated to this problem use ordinary boundary

conditions of the theory of elasticity (Nye, 1985). Note also that
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the flexoelectric terms in the thermodynamic potential increase

the order of the differential equations describing the behavior of

flexoelectric. Therefore, along with the modification of conven-

tional electrical and elastic boundary conditions, it is necessary to

take into account the emergence of additional boundary conditions

(Yurkov, 2011). In the vast majority of papers devoted to the theory

of flexoelectricity these conditions are not even mentioned. The

purpose of this paper is to investigate, with a focus on the correct

description of the boundary conditions, the impact of FEE on the

distribution of polarization and deformation in a thin flexoelectric

layer. For simplicity, it is assumed that the flexoelectric has neither

piezoelectric or electrostrictive properties.

2. Variational principles for flexoelectricity

For the description of a flexoelectric occupying a volume V and

bounded by the surface S, we will use the energy density w. We

introduce also the displacement vector u with the components ui,

(i = 1, 2, 3), and the potential ϕ. In the usual way, using the above

notations, we define the electric field E = −ϕ,i, the deformation

tensor ui j = (ui, j + u j,i)/2, and the deformation gradient vi jk = uk,i j .

Hereafter, the subscript after the comma denotes partial differenti-

ation with respect to Cartesian coordinates x1, x2, x3. It is assumed

that the energy density w as well as the electric field Ei depends

on the deformation tensor uij and its gradient vijk. Then the total

internal energy of the material body W (excluding the potential en-

ergy of, e.g., a mechanical loading device or energy of electrodes)

stored in the volume V has the form

W ≡
∫

V

w(ui j, vi jk, Ei)dV. (1)

The variation of (1) with respect to uij, vijk, Ei gives

δW =
∫

V

(σi jδui j + τi jkδvi jk + DiδEi)dV, (2)

where {σ ij, τ ijk, Di} are, respectively, the stress tensor, the higher-

order stress tensor (Mindlin, 1965), and the electric displacement

σi j = ∂w

∂ui j

, τi jk = ∂w

∂vi jk

, Di = ∂w

∂Ei

. (3)

In the above equations, Eqs. (2) and (3), we have used the Einstein

summation convention in which repeated indices are summed

over. Note that the variables σ ij, τ ijk, Di and uij, vijk, Ei are the gen-

eralized forces and coordinates which are conjugate to each other.

Return to the original independent variables ui, ϕ. Using the Gauss

theorem, the volume integrals in (2) can be converted to the sur-

face integrals over S

δW =
∫

V

[
(σ jk, j − τi jk,i j)δuk + Di,iδϕ

]
dV

+
∫

S

[(σ jk − τi jk,i)njδuk + τi jkniδuk, j + Djnjδϕ]dS, (4)

where nj are components of the vector normal to the surface S.

According to (4), the extremal condition (1) leads to equations

ς jk, j = 0, Di,i = 0, (5)

in which the generalized stress ς jk is given by ς jk = σ jk − τi jk,i.

It is necessary to mention that the values of δuk, j cannot be

considered as independent because they are determined by the

values of δuk on the surface S. In view of this, we represent δuk, j

in the form of

δuk, j = d
‖
j
δuk + njd

⊥δuk, (6)

i.e. the derivative can be decomposed into normal and tangential

components (Mindlin, 1965)

d⊥ ≡ nk

∂

∂xk

, d
‖
j
≡ (δ jk − njnk)

∂

∂xk

, (7)

with δjk as the Kronecker symbol. After substituting (6) into (4)

and accounting for (5), we obtain

δW =
∫

S

(Tkδuk + Rkd⊥δuk + nkDkδϕ)dS. (8)

Here we have introduced the notations

Tk ≡ niςik + nin jτi jk(d
‖
l
nl ) − d

‖
j
(niτi jk), (9)

Rk ≡ nin jτi jk. (9)

From (8), it is evident that the following 14 boundary conditions

must be satisfied at the surface of flexoelectric:

[ϕ] = 0, [uk] = 0, [d⊥uk] = 0,

[Rk] = 0, [Tk] = 0, [nkDk] = 0.
(10)

The symbol [X] denotes the jump of a function X when passing

through the interface. The first 4 conditions are standard and cor-

respond to the continuity of the displacement and potential. The

continuity of the normal component of the electric displacement

nkDk is also included in the standard electrostatic boundary con-

ditions (Nye, 1985). At the same time, the condition of continuity

of Tk is a generalization of the continuity condition for niσ ij in

the usual theory of elasticity. Only the conditions of continuity

of d⊥uk and Rk are introduced here for the first time. Thus, the

electroelastic field in the flexoelectric must satisfy 4 equations

(5), 14 conditions at the interfaces between the media (10), and 7

conditions at the external boundaries. The latter ones may be in

the specification of uk, d⊥uk, ϕ or Tk, Rk, Dknk, or a combination of

these conditions. In particular, according to (9), the next relations

must be satisfied for the case of free external boundaries

nkDk = 0, Tk = 0, Rk = 0. (11)

It worth to emphasize that the above derivation of the equa-

tions and boundary conditions for the flexoelectric does not de-

pend on the form of w. It can be easily generalized to the case of

w depending on the polarization P and its derivatives. The deriva-

tion of the elastic boundary conditions for the specific case of the

quadratic dependence of w on the generalized forces is available in

Yurkov (2011). For the general case, the boundary conditions can

be found in Liu (2014).

3. Linearized theory for the flexoelectric layer

As an example of the model application, we discuss the prob-

lem of the flexoelectric layer. The thickness of the flexoelectric is

denoted by l and the applicate axis is directed perpendicular to

the layer. We consider the scalar case, i.e. assume the existence of

a single component of the displacement vector depending only on

z = x3. A prime denotes the derivative with respect to z. The po-

tential difference across the layer boundaries is denoted by U. It

is believed that these boundaries are free from stress. This means,

that the natural boundary conditions of the form (10) (Gelfand and

Fomin, 2000) are fulfilled for the displacement and polarization.

The energy density in a one-dimensional model for the specified

layer is written in the form (Catalan et al., 2004; Zubko et al.,

2013)

w = a

2
P2 + b

4
P4 + c

2
(u′)2 − f (1)Pu′′ − f (2)P′u′

+ g

2
(P′)2 + h

2
(u′′)2 + Pϕ′ + ε0

2
(ϕ′)2. (12)

Here {a, b} are the Ginzburg–Landau coefficients, c elasticity mod-

ulus, f (1),(2) flexoelectric coefficients, {g, h} gradient coefficients, ε0

dielectric constant. For the case of interest, Eq. (5) takes the form

of D′ = 0, ς ′ = 0, where

D = ε0E + P, ς = cu′ + f P′ − hu′′′, (13)
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