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a b s t r a c t

Granular materials, in common with many complex systems, exhibit a range of self-organization pro-
cesses that control their mechanical performance. Many of these processes directly manifest in the evo-
lution of the contact network as the material responds to applied stresses and strains. Yet the connections
between the topology, structure and dynamics of this evolving contact network remain poorly under-
stood. Here we demonstrate that dense granular systems under a variety of loading conditions exhibit
preferred structural ordering reminiscent of a superfamily classification. In particular, two distinct super-
families are discovered: the first is typically exhibited by materials in the pre-failure regime, while the
second manifests in the unstable or failure regime. We demonstrate the robustness of these findings with
respect to a range of packing fractions in experimental sand and photoelastic disk assemblies subject to
compression and shear, as well as in a series of discrete element simulations of compression tests. We
show that the superfamily classification of small connected subgraphs in a granular material can be used
to map boundaries in a so-called jamming phase diagram and, consequently, offers a key opportunity to
bridge the mechanics and physics perspectives on the constitutive behavior of granular systems.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The development of predictive continuum models for granular
materials has a long history. A missing ingredient in this effort in
the period preceding the introduction of high-resolution or grain-
scale measurements, is knowledge of the evolving internal structure
in the course of deformation of the material. Despite recent collec-
tion of grain-scale measurements, explicit information on the
dominant structures, their most pervasive topologies or fabric,
and their dynamics are surprisingly lacking. We know of only
one system where this information has been comprehensively
established and this is based on data from a physical experiment
in two dimensions (Tordesillas et al., 2012).

Here we combine the concepts of network motifs pioneered by
Milo et al. (2002) and the superfamily phenomenon of Xu et al.

(2008) to study the defining fabric of dense granular materials.
We study a total of nine tests from simulations and experiments
involving two-dimensional and three-dimensional granular mate-
rials subjected to different loading tests. The two-dimensional data
sets from simulations comprise two biaxial compression tests sub-
ject to constant volume boundary conditions (see, for example,
Tordesillas, 2007). In three-dimensions, the data from simulations
include a compression test of an assembly of polyellipsoidal parti-
cles (Peters et al., 2009); a sample of spheres constrained to follow
a proportional strain loading path to induce diffuse failure (Sibille
et al., 2009); and a sample of spheres subject to shear to study per-
meability within dilatant shear bands (Sun et al., 2013). Three
experimental three-dimensional triaxial tests are considered
where l-CT X-ray methods allow identification of grains and their
contacts. Two sand types, Caicos ooid and Hostun, are examined
using data from Andò et al. (2013). A third sand type, Ottawa, is
examined using data from Druckrey and Alshibli (2014). Some of
the samples fail by strain localization, while others exhibit diffuse
failure. In addition to these, we also characterize a unique series of
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90 experimental runs that were conceived to explore a recently
postulated phase diagram where photoelastic disk assemblies
across a range of packing fractions were sheared until they become
shear-jammed, i.e., there is a percolating strong network in both
spatial directions (Bi et al., 2011). The question we seek to address
is: With respect to structure and structural evolution, is there an
unambiguous structural property common to these systems despite
the difference in dimensionality, loading condition, material or failure
mode?

To place this effort more precisely with respect to the state of
knowledge, not just in the physics and mechanics of granular
materials, but also the mathematics and statistics of complex sys-
tems, we briefly review some pertinent advances across these dis-
ciplines. Broadly, our strategy is to characterize the structure and
functionality of each system by mapping material properties to a
complex network (Walker and Tordesillas, 2010). By far the most
studied is the contact network, although other complex networks
based on kinematics and other properties besides the contacts also
prove useful. The study of the complex network properties permits
the quantitative characterization of structural evolution in an
entirely multiscale framework. In many cases, the structure can
be characterized using macroscopic quantities which are typically
global averages of local microscopic quantities across the entire
network (Walker and Tordesillas, 2010). That said, the functional-
ity that is critical to macroscopic granular behavior manifests itself,
not at the grain-scale, but at the mesoscale where emergent pat-
terns (e.g., force chains, vortices etc.) and instabilities are the norm.
Thus, in the past, much effort has been devoted to the intermediate
mesoscopic scale: here structural properties of networks have been
investigated, including the prevalence of contact cycles of a given
length scale (Tordesillas et al., 2010; Arévalo et al., 2010), the pop-
ulation and transition dynamics of small subgraphs (Tordesillas
et al., 2012), assortativity patterns of pore connectivity (Russell
et al., submitted for publication), the characteristic length scales
of network communities (Tordesillas et al., 2013), to name a few.
Recently, Matsushima and Blumenfeld (2014) have uncovered
some universal emergent structural properties of 2D granular pac-
kings seemingly independent of some material properties within
their quadron formulation.

In this study, we are interested in the topology of mesoscopic
structures in the contact network which consist of the set of con-
nected subgraphs with four vertices and associated edges (see,
Fig. 1 where the subgraphs are itemized by A, B, C, D, E and F).
We consider four rather than three vertex subgraphs because in
an undirected network there are only two such three vertex

subgraphs, namely, a closed and an open triangle; on the other
hand, five or higher number vertex subgraphs are challenging to
enumerate and their identification in a general network remain a
difficult problem. Although it is a challenge to identify the exact
number of all six possible four vertex subgraphs in a network, algo-
rithms do exist for determining these tetrad structures (e.g.,
Kashani et al., 2009).

An important question in understanding the connection
between structure and functionality of complex systems (e.g., neu-
rological networks, cellular structure, food webs, electronic cir-
cuits, social networks) has been whether or not the structure of a
given n-vertex subgraph can be referred to as a motif (Milo et al.,
2002, 2004). Motifs are generally defined as recurring small con-
nected subgraphs in a graph whose abundance is greater than
would be expected compared to their abundance within an equiv-
alent random graph (Milo et al., 2002, 2004). Knowledge and
understanding of motifs is becoming important as they are basic
functional building blocks combining and interacting to form lar-
ger-scale functions. For example, small-motifs within biological
transcription networks been shown to be crucial to regulation of
living cells (Mangan and Alon, 2003; Yeger-Lotem et al., 2004).
Vázquez et al. (2004) have also demonstrated in cellular networks
(i.e., transcription, metabolic, protein interaction) the abundance
and aggregation of small subgraphs helps to define a network’s
large-scale organization. Since networks are constructed to sum-
marize the structural or functional roles of an observed system,
network subgraphs identified as motifs are thought to be impor-
tant building blocks of the network and the system. For example,
in a granular materials context, the closed three vertex subgraph,
or triangle structure, can be identified as a motif in the contact net-
work of a two-dimensional granular material. These triangles play
an important structural and functional role in the physics of gran-
ular media (Tordesillas et al., 2010, 2012; Arévalo et al., 2010). In
Milo et al. (2004), subgraphs can be identified as motifs by calcu-
lating a significance profile score, based on their prevalence in a
given network, compared to their prevalence in a distribution of
equivalent random networks.

As important as identifying whether a subgraph is a motif or not
is the abundance ranking of the population of a subgraph in a net-
work compared to other subgraphs in the same class. For example,
for the six four vertex connected subgraphs whether one, or many,
are technically motifs is not as relevant as whether one subgraph
appears more frequently than another. Perhaps the best example
of this is the superfamily phenomenon arising from the relative
ranking of four vertex subgraphs in networks constructed from
time series data. In Xu et al. (2008) it was shown that the rank-
ordering of the population of four vertex subgraphs in so-called
phase space networks could provide a broad classification of the
underlying dynamical system responsible for the observed time
series. That is, networks arising from chaotic time series data
exhibited a different superfamily classification to networks arising
from periodic time series data. The structure of each four vertex
subgraph in these phase space networks also possess a physical
interpretation of the geometry of reconstructed phase space and
phase space trajectories. Moreover, this superfamily classification
was also shown to be robust against moderate levels of observa-
tional noise on the time series (Xiang et al., 2012). For the networks
we study here — structural contact networks of a granular material
— each of the six four vertex subgraphs have a physical and functional
interpretation. In two dimensions, only three of the subgraphs —
those with cycles B, C and E — are technically motifs with respect
to the significance profile score in Milo et al. (2004). The subgraph
F — four triangles arranged in a three-dimensional tetrahedral-like
configuration — arises less rarely in two-dimensional contact
networks requiring a wide range of polydispersity to exist.
We are thus interested in identifying the relative abundance, or
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Fig. 1. The six different undirected subgraphs of size four, i.e., four connected
vertices.
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