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a b s t r a c t

Concrete delivery dispatching suffers from a lack of practical solutions and therefore, in the absence of
automatic solutions, experts are hired to handle this task. In addition, the concrete delivery dispatching
problem can be modelled mathematically but it can only solve up to medium sizes of this problemwithin
a practical time. This paper attempts to answer the question of how much we can rely on experts' de-
cisions. First, the concrete delivery problem is presented. Second, a benchmark for the problem is
achieved; two heuristic methods are used for those instances that their exact solutions are not available.
Finally, the experts' decisions are compared with the obtained benchmarks to assess the optimality gap
of the experts. A field dataset which belongs to an active Ready Mixed Concrete (RMC) is used to evaluate
the proposed idea. The results show that experts' decisions are near to optimum, with an average ac-
curacy of 90%. However, after comparing individual decisions between optimisation models and the
experts' decisions, we can conclude that optimisation models only try to achieve the lowest cost, while
the expert prefers a more stable dispatching system at slightly higher cost.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In order to assess the experts' decisions in concrete delivery
dispatching we need to compare their decisions with the best
possible decisions. Optimisation is used to find the best solution
but obtaining the optimum solution for a large scale Ready Mixed
Concrete Dispatching Problem (RMCDP) with available computing
facilities is computationally intractable as RMCDP is characterized
as being NP-hard [26,9,23,28,29]. In the literature, the main chal-
lenge for implementing optimisation and also the automating
RMCDP process have been discussed, such as [1,5,21,23,28,30],
which can be summarised into two issues [16]: (i) a large number
of variables, (ii) dealing with an uncertain and dynamic environ-
ment. In the absence of fast and optimum solutions, in practise
experts are hired to handle concrete delivery resource allocation
tasks [7,14]. In this paper, for the purposes of acquiring an exact
solution two models are used: (i) IP (hard time window), (ii) MIP
(soft time window). Two heuristic approaches are used in the
absence of optimum solutions and then best the obtained solu-
tions are set as a benchmark and are used to assess the experts'
decisions.

2. Problem formulation

In the past decade, a few attempts have been made to effec-
tively model the RMCDP which is a generalised Vehicle Routing
Problem (VRP). The main differences between RMCDP and VRP can
be summarized as follows:

1. In RMCDP in each trip a truck can haul concrete to only one
customer.

2. In RMCDP a truck can not travel longer than a specific time
because fresh concrete is a perishable material.

A few RMCDP formulations have been introduced, such as
[1,4,5,15,21,23,28,29]. To simplify the formulation, in some meth-
ods [1,28,29] the depots and customers are divided into sets of
sub-depots and sub-customers, each based respectively on the
number of loads at depots and the number of required deliveries.
The compact formulation of RMCDP can be stated as follows [1,18]
if we assume RMCDP to be a graph G¼(V,E) in which V is the set of
vertices belonging to start points, customers, depots and end
points { }V u C D vs f= ∪ ∪ ∪ . Additionally, E is the set of edges
delineating the distance between vertices.
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The objective function (Eq. (1)) forces optimisation to find
feasible solutions for all customers and penalises if a feasible so-
lution for customer (c) cannot be found by applying zero to yc.
Therefore, due to the value of M which is a large constant, opti-
misation attempts to avoid unsupplied customers. Eq. (2) ensures
that a truck at the start of the day must leave once from its base,
and similarly Eq. (3) necessitates the return of a truck just once to
the depot by the end of day. In reality, a truck arrives at either a
depot or a customer then leaves that node after loading/unloading.
This concept is called conservation of flow and Eq. (4) ensures this
issue if u C∈ then u D∈ and j C∈ but if u D∈ then v D∈ and
j D vf∈ ∪ . In this formulation a depot is divided into a set of sub-
depots based on the number of possible loadings at that depot.
Similarly, a customer is divided into a set of sub-customers
according to the number of required deliveries. Therefore,

Eqs. (5) and (6) respectively certify the sending only of one truck to
each customer and only one depot supplies each customer. Eq. (7)
checks the demand satisfaction of customers. Eqs. (8) and (9) are
designed to control timing issues. Eq. (8) ensures that concrete will
be supplied to customers within the specified time, and similarly
Eq. (9) ensures that fresh concrete is not hauled more than a
specific time which varies according to the type of concrete, be-
cause the fresh concrete is a perishable material and its hardening
process will be started γ minutes after the loading. Due to the
uncertainties in real delivery situations, RMCs are not able to
guarantee supplying concrete at precise fixed times. Therefore,
typically there is flexibility in most deliveries, which can occur
either a little earlier or a little later than the times requested by
customers. This issue is modelled in Eq. (10); Uu and Lu define the
boundaries of the time window for each customer (u).

3. Heuristic approaches

Heuristic methods have been widely used in the literature to
tackle RMCDP. The implementation of Genetic Algorithm (GA) has
been highlighted more than other heuristic methods. Garcia et al.
[6] modelled the RMC for a single depot and solved it via opti-
misation and GA. However, their approach relaxes some realistic
constraints and only considered small instances. Feng et al. [4] also
modelled a single depot RMC and assumed some parameters
such as loading/unloading times as fixed parameters. Further, the

Notations

Symbol Description
C set of customers
D set of depots
K set of vehicles
us set of starting points
vf set of ending points
Su service time at the depot u
t (u,v,k) travel time between u and v with vehicle k
qk maximum capacity of vehicle k
qc demand of customer c

Wo time at location o
βc penalty of unsatisfying the customer c
M a big constant
ϒ maximum time that concrete can be hauled
Uu Upperbond of time winodow for node u
Wu Lowerbond of time winodow for node u
xuvk 1 if route between u and v with vehicle k is selected,

0 otherwise
yc 1 if total demand of customer c is supplied,

0 otherwise
Z(u,v,k) cost of travel between u and v with vehicle k

Table 1
Comparing IP, MIP, Robust-GA, Sequential-GA and experts' decisions in the test domain in terms of cost.

Instance code Number of deliveries in day Operating cost (km)

IP (hard time window) MIP (soft time window) Robust-GA Sequential-GA Experts' decisions

D1 63 572 565 807 575 642
D2 112 963 954 1241 978 1021
D3 153 1381 1373 1704 1561 1597
D4 197 2098 NA 2535 2380 2207

Table 2
Comparing IP, MIP, Robust-GA, Sequential-GA and experts' decisions in the test
domain in terms of optimialty gap.

Instance
code

Number of
deliveries in
day

Best solu-
tion ob-
tained by

Gap between best solution and

IP MIP Robust-
GA (%)

Sequential-
GA (%)

D1 63 MIP 0.24% 0 42.83 1.77
D2 112 MIP 0.94% 0 30.08 2.52
D3 153 MIP 0.58% 0 24.11 13.69
D4 197 IP 0 NA 20.83 13.44
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