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This paper presents an analytical study on the elastic critical behaviour of cylindrically curved panels under pure
compressive stresses, for which an energy formulation is developed. Firstly, this energy formulation is described,
the general assumptions are stated, the degrees-of-freedom and the displacement functions are defined and,
using strain-displacement relations, the strain energy and the potential energy are derived. Secondly, the resulting
general energy formulation is used to obtain,whenever feasible, simple expressions or, otherwise, values of the elas-
tic critical stress of simply supported cylindrically curved panels under pure compression. A discussion on the num-
ber of degrees-of-freedomnecessary to obtain accurate results is also presented. The analytical results are compared
to numerical (finite element) results obtained by the authors. Finally, a parametric study is made regarding the in-
fluence of constraining (or not) the panel longitudinal edges on the elastic critical stress.
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1. Introduction

A thin shell is a thin-walled three-dimensional body for which one
dimension (i.e. the thickness) is significantly lower than the other two
dimensions and it is characterised by its non-plane initial shape (i.e. fi-
nite radius of curvature). In other words, shells have generally more in-
tricate behaviour than plates due to their initial curvature. Depending
on the type of variation of curvature of the shell middle surface, it can
be classified as cylindrical, conical, spherical, ellipsoidal, toroidal and
torispherical [1] and, these different shapes, together with the support
conditions, loading type and constitutive laws of the material, will de-
termine the shell behaviour. One of themost interesting shell structures
is the cylindrical panel, which displays constant finite curvature along
its transversal direction and null curvature along its longitudinal direc-
tion, does not exhibit full geometric revolution and it is supported along
the four edges (two longitudinal and two transversal). In this paper, we
consider cylindrically curved panels as thin shallow shells, similar to
slightly curved plates [2]. It is possible to define a thin shallow shell
on the basis of the following conditions [3]:
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where Z(x,y) is the function representing the position of the shell mid-
dle surface. According to Koiter [4] a shell is said to be shallow if the re-
lation between the characteristic wavelength of its deformed
configuration l, and the smallest radius of curvature of the middle sur-
face Rmin, is negligible, i.e. l/Rmin ≪ 1. Vlasov [5] defined shallow shell
as a shell whose rise is limited to 20% of the smallest dimension of the
shell in its plane (projection on the coordinate plane Oxy). Later in
1959, Novozhilov [6] showed that this definition leads to errors exceed-
ing 5%.

The most successful theory to study thin shallow shells is that pro-
posed by Donnell-Mushtari-Vlasov [4,7,8] nonlinear theory, or simply
DMV nonlinear theory. In order to introduce DMV theory, a brief de-
scription of the shell geometry is made. Using Fig. 1 as reference it is
possible to define infinitesimal distances dsx and dsy. These distances
can be given by the following expressions:

dsx ¼ Adx ;dsy ¼ Bdy ð2Þ

where A and B are the Lamé coefficients given by the following expres-
sions [7].
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where X = X(x,y), Y = Y(x,y) and Z = Z(x,y).

Journal of Constructional Steel Research 127 (2016) 165–175

⁎ Corresponding author.
E-mail address: jpmartins@dec.uc.pt (J.P. Martins).

http://dx.doi.org/10.1016/j.jcsr.2016.07.029
0143-974X/© 2016 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Journal of Constructional Steel Research

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcsr.2016.07.029&domain=pdf
http://dx.doi.org/10.1016/j.jcsr.2016.07.029
mailto:jpmartins@dec.uc.pt
Journal logo
http://dx.doi.org/10.1016/j.jcsr.2016.07.029
Unlabelled image
http://www.sciencedirect.com/science/journal/0143974X


DMV nonlinear theory assumes the fundamental hypotheses of the
classical theory formulated by Love [9]. Besides these hypotheses,
DMV nonlinear theory also assumes that the shell shows infinitesimal
deformations andmoderate rotations, being suitable to analyse shallow
shells. DMV theory takes into account rotations and the kinematic rela-
tionships incorporate them as follows:
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Where, u, v andw are functions describing the displacement field in
longitudinal, transverse and out-of-plane direction, respectively, εx,0
and εy,0 are themembrane strain at x- and y-direction, γxy,0 is themem-
brane distortion between x- and y-direction, χx and χy are the changes
in curvature in x- and y-direction and χxy is the twist in curvature be-
tween in x- and y-direction.

Finally, it can be seen that the Lamé parameters can be specified to
obtain kinematic relationships for specific geometries, such as the

rectangular flat plate (A= 1, B= 1, Rx = ∞, Ry = ∞) and circular cylin-
drical shell (A = 1, B = Ry, Rx = ∞). For the case of nonlinear shallow
shells, the Lamé parameters are A= 1, B= 1 and both Rx and Ry are fi-
nite. Therefore, it is acceptable, when analysing shallow shells, to
consider the curvilinear (orthogonal) system of coordinates. In con-
clusion, the intrinsic geometry of a shallow shell is identical to the
geometry of a plane of its projection. This actually represents the
first basic assumption of the theory of shallow shells [3]. The other
assumptions of shallow shells theory are that (i) the effect of trans-
verse shear forces in in-plane equilibrium equations is negligible
and (ii) the influence of the deflections w in the bending response
of the shell predominates over the influence of the in-plane displace-
ments u and v.

The elastic buckling of cylindrically curved panels under pure
compression was studied by Redshaw [10], Timoshenko [11],
Stowell [12] and Batdorf [13], who proposed analytical expressions
for the calculation of critical stresses. Despite being a classical
theme, the study buckling behaviour of curved panels is recently
gaining importance since this type of structural elements is being
employed in the design of slender webs in steel bridge girders to re-
sist shear and flexural compression [14], as an example. Additionally,
there are some accepted and commonly used methods to compute
the elastic critical stress of cylindrically curved panels but, as some
researchers have been claiming in their research outcomes, they
are outdated [15,16]. Because of these reasons, recent investigations
by Domb & Leigh [15] and Martins et al. [17], were carried out.
They performed extensive numerical studies on the buckling behav-
iour of shallow cylindrical panels and proposed methodologies to
calculate accurately their elastic critical stress. The proposed meth-
odology by Martins et al. [17] although quite accurate
(Stowell proposal presents errors up to 20%) lacks a mechanical
background and it is purely calibrated with numerical results. For
that reason, one of the objectives of this paper is to derive simple
to use analytical closed-form expressions maintaining a strong me-
chanical background.

2. Energy formulation

2.1. General

The semi-analytical study presented herein is based on previous
studies by Thompson & Hunt [18] and Simões da Silva [19]. The ap-
proach followed by Thompson & Hunt ignores the transverse and
shear membrane stresses. From a physical point of view, this assump-
tion means that the panel is seen as a group with infinite number of in-
finitely thin strips unable to transfer shear and/ormembrane stresses to
each other, but acting together during the deformation imposed by the
external applied loads. Although this simplistic discretization assump-
tion, this energy formulation is still able to incorporate the main fea-
tures of the plate's buckling and postbuckling behaviour [18].
However, in this paper, this simplification is dropped making the
panel able to transfer shear and membrane stresses in both directions.
It should be mentioned that while for flat panels accounting for nonlin-
ear terms in the y-direction (quadratic terms in second expression of
Eqs. (4) and (10)) does not play any role in obtaining the elastic critical
stress, the same is not true for curved panels, where the consideration
for these extra nonlinear terms is crucial to obtain accurate results for
both the elastic critical stress and the postbuckling path.

2.2. Strain energy and potential of external loads

For a general shell element, the total potential energy of an elastic
body depends on the membrane strain energy Um (Eq. (5)), bending
strain energy Ub (Eq. (5)), and potential of external loads (Eq. (5)) [7]
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Fig. 1. Geometric definition of the relationships in expression (2).
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Fig. 2. Degrees-of-freedom considered in the analysis.
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