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The majority of the existing literature on castellated members is focused on beams. Very little work has been
done on the stability of castellated columns although they have been increasingly used in buildings in recent
years. This paper presents a new analytical solution for calculating the critical buckling load of simply supported
castellated columns when they buckle about the major axis. This analytical solution takes into account the
influence of web shear deformations on the buckling of castellated columns and is derived using the stationary
principle of potential energy. The formula derived for calculating the critical buckling load is demonstrated for
a wide range of section dimensions using the data obtained from finite element analyses published by others.
It was found that the influence of web shear deformations on the critical buckling loads of castellated columns
increased with the cross-sectional area of a tee section and the depth of web opening, but decreased with the
length and theweb thickness of the column. It is shown that the inclusion ofweb shear deformations significantly
reduces the buckling resistance of castellated columns. Neglecting the web shear deformations could
overestimate the critical buckling load by up to 25%, even if a reduced second moment of area is used.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Castellated beams have been used as structural members in struc-
tural steel frames [1]. An example is shown in Fig. 1. A castellated
beam or column is fabricated from a standard steel I-shape by cutting
the web on a half hexagonal line down the centre of the beam. The two
halves are moved across by one spacing and then rejoined by welding
[1]. This process increases the depth of the beam and hence the major
axis bending strength and stiffness without adding additional materials.
This allows castellated beams to be used in long span applications
with light or moderate loading conditions in floors and roofs. The
fabrication process creates openings on the web, which can be used to
accommodate services. Despite the increase in the beam depth the
overall building height can hence be reduced, compared with a solid
web solution, where services are provided beneath the beam. This leads
to savings in the cladding costs. Despite the increase in the fabrication
costs caused by cutting and welding, the advantages outweigh the
disadvantages.

Some design guidance on the strength and stiffness of castellated
beams is given [1–3]. Due to the opening in the web, castellated beams
are more susceptible to lateral-torsional buckling. Intensive research on
the lateral stability [4–13] of castellated beams started in the early
1980s. Experimental investigations [4–6,9,13] were carried out and finite
element methods [6–8,10–12] were used to predict the buckling
behaviour of such beams and to compare the predictions with the results

from the experiments [6,12]. The effects of slenderness on the moment-
gradient factor [7] and of elastic lateral bracing stiffness on the lateral-
torsional buckling [8,13] of simply supported castellated beams were
studied using 3-D finite element models. The failure modes [4–6,9–11]
and the interaction of the buckling modes [10] of castellated beams
were investigated. It was found that the web opening of castellated
beams had little influence on the lateral-torsional buckling [4] and the
failure mode by lateral-torsional buckling of castellated beams was
shown to be similar to that for solid web beams [5], while web
distortional buckling was prone when an effective lateral brace was
provided at the mid-span of the compression flange [9,13] and this type
of failure reduced significantly the failure load [10] of slender castellated
beams.

In recent years castellated members have also been widely used as
columns in buildings [14]. Themain benefit of using a castellated column
is to increase its buckling resistance about the major axis. However,
because of the openings in the web, castellated columns have
complicated sectional properties, which make it extremely difficult to
predict their buckling resistance analytically. Compared to a solid web
column, the castellated column has weak web shear stiffness and thus
the shear deformations are more pronounced when the column has a
flexural buckling, which can significantly reduce the buckling capacity
of the columns [14]. The effect of shear on the buckling capacity of
built-up columns was reported by Gjelsvik [15], who showed that
the columns exhibit reduced shear stiffness and this reduces their
buckling capacity due to the increase in the lateral deflection. This
indicates that the buckling theory taking into account shear
deformations developed by Timoshenko and Gere [16] for solid
web columns may not be suitable for castellated columns.
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The above survey of the literature shows that the majority of the
existing literature on castellated members dealt with the research into
castellated beams using experiments and/or numerical studies. Very
little work has been found on castellated columns. The stability of
castellated columns was studied by El-Sawy et al. [14] using finite
element methods. Their solution takes into account shear and flexural
deformations for the calculation of the buckling capacity. However,
their study used finite element methods and only numerical solutions
were provided. To the best of the authors' knowledge, no analytical
work is available to predict the buckling capacity of castellated columns.

In this paper an analytical solution using the energy method is
presented to determine the buckling capacities of castellated columns.
A simple close-form solution for determining the critical buckling load
of simply supported castellated columns of doubly-symmetric sections,
subject to axial compression load is developed. The critical buckling load
derived is demonstrated using the results from the finite element
analysis published in the literature.

2. Analytical study

The classical bending theory of beams, based on Bernoulli's
hypothesis that the plane normal cross sections of a beam remain
plane and normal to the deflected centroidal axis of the beam during
deflection, ignores the deformation caused by shear forces. When a
column buckles, however, the axial load causes not only bending
moments in the cross sections, but also shear forces. This is particularly
so in castellated columns because the web is flexible in shear. The
deformations due to shear forces in castellated columns can be taken
into account by using either the generalized form of the classical
bending theory called Timoshenko beam theory [16] or the bending
theory of sandwich beams [17]. In the former the assumption that the
plane cross sections remain normal to the deflected beam axis is
relaxed, that is, the slope of the deflected beam axis is no longer required
to be equal to the rotation of the cross section. The difference of these two
rotations is defined as the shear angle, which is produced by shear forces
that are normal to the deflected beamaxis. In the latter the outer layers of
the sandwich beam are assumed to deform according to Bernoulli's
hypothesis and the cross section of the middle layer behaves as a shear

wall. However, the rotation of the middle layer due to shear forces does
not need to be equal to the slope of the deflected beam axis.

In addition to the shear deformation, another difficult problem
that arises in castellated members is the second moment of area that
varies periodically from that of an “I-section” shaped beam (i.e. with
no openings) to that of a “two-tee-section” shaped beam (i.e. with
openings). This unique nature makes the castellated beam more like a
sandwich beam, in which the two tee sections behave as the outer
layers of the sandwich beam to take the bending moment, whereas
the discontinuous parts of the web behave as the middle layer of the
sandwich beam to take shear forces.

Consider a doubly-symmetric section castellated member shown in
Fig. 1a, in which the flange width and thickness are bf and tf, the web
depth and thickness are hw and tw, and the half depth of hexagons is a.
The distance between the centroids of the top and bottom tee sections
is 2e as shown in Fig. 1b. Let u1(x) and u2(x) be the axial displacements
of the centroids of the top and bottom tee sections, and w(x) be the
transverse displacement of the section (i.e. all points on the section
have the same transverse displacement). According to the displacement
assumptions shown in Fig. 1b, the axial displacement at any point at the
section with distance x from the origin can be expressed as follows:

For the top tee section,−(hw/2+ tf)≤ z≤−a

u x; zð Þ ¼ u1 xð Þ− zþ eð Þdw
dx

: ð1Þ

For the bottom tee section, a≤ z≤ (hw/2+ tf)

u x; zð Þ ¼ u2 xð Þ− z−eð Þdw
dx

: ð2Þ

For the middle part between the two tee sections, −a≤ z≤a

u x; zð Þ ¼ u1 xð Þ þ u2 xð Þ
2

− z
a

u1 xð Þ−u2 xð Þ
2

− e−að Þ dw
dx

� �
: ð3Þ

The axial strains in the two tee sections can be obtained using the
strain-displacement relation as follows:

Fig. 1. Definitions of notations for (a) geometry where a is the half depth of a hexagon, (b) deformations, and (c) internal forces of a castellated member with hexagonal holes.
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