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a b s t r a c t

An electromechanical linear oscillator with a random ambient excitation and telegraphic
noise parametric excitation is considered as an energy harvester model. It is shown that a
parametric colored excitation can have a dramatic effect on the enhancement of the
energy harvesting. A close relation with mean-square stability of the oscillator is estab-
lished. Four sources of the ambient excitation are considered: the white noise, the Orn-
stein–Uhlenbeck noise, the harmonic noise and the periodic function. Analytical expres-
sions for stationary electrical net mean power are presented for all the considered cases,
confirming the proposed approach.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration-based energy harvesting has recently received a great attention (see e.g. contributions to the book [1] and
references therein). The aim of the research is to design a device that will harvest as much energy as possible, subject to
constraints on the size, weight, and cost of the system. The main method of performing power harvesting is to use pie-
zoelectric materials that can convert the ambient energy surrounding the device into electrical energy (see e.g. the review
[2]). Majority vibration-based energy harvesters are designed as linear resonators to achieve the optimal performance by
matching their natural frequencies with the ambient harmonic excitation frequencies. However, a slight shift of the exci-
tation frequency will cause a dramatic reduction in the device's performance. Unfortunately, in the vast majority of practical
cases, the ambient excitations are random with energy distributed over a wide frequency spectrum. To overcome this
difficulty new approaches based on using important features of nonlinear vibratory systems have been intensively studied
(see recent reviews [3–5]).

For the sake of demonstration a key idea of the method considers a simple vibratory system under a random external
excitation. It is of course the linear harmonic oscillator

€yþγ _yþω2y¼ ηðtÞ; (1)

where γ40 is a damping parameter, ω is the natural frequency, and ηðtÞ is a Gaussian white noise with intensity D,
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〈ηðtÞηðsÞ〉¼ 2Dδðt�sÞ. It is easy to show that the second-order moments

z1 ¼ E½y2�; z2 ¼ E½ _y2�; z3 ¼ E½y _y�
satisfy the following set of equations [6]:

_z1 ¼ 2z3; _z2 ¼−2γz2−2ω2z3þ4D; _z3 ¼ z2−γz3−ω2z1: (2)

One can get readily from (2) the stationary moments (t-1). Then for the stationary mean kinetic energy of the oscillator
E0 ¼ z2;ðstÞ=2 we have the expression

E0 ¼
D
γ
: (3)

It is worth mentioning that it has been recently demonstrated in Ref. [7] that a linear as well as nonlinear system (with
the exception of multistable systems) under an external white noise excitation can absorb on average a limited amount of
power, which is proportional to the mass of the system and the white noise intensity. In the case of the linear system (1)
power PW ¼ γz2 ¼D. It should be stressed that the harvested power is independent of the system's properties. This result
provides an upper boundary for the harvested power but does not show how a system can be adjusted to achieve its best
performance. It happens because this result was derived for a white noise excitation, which is an unrealistic mathematical
model of a physical random process with finite power and variance. If the excitation in (1) to be a much more realistic
model, like the Ornstein–Uhlenbeck process (25) for example, then power of (1) can be obtained exactly analytically using
the above approach:

Pμ ¼ γz2 ¼
Dð1þγμÞ

1þγμþω2μ2 ¼ PW
1

1þ ω2μ2

1þγμ

The derived expression tends to the above result as μ-0 and the Ornstein–Uhlenbeck process tends to a white noise.
Apparently the system power Pμ will always be smaller than that due to a white noise, as expected, for μ40. Nevertheless
formula for Pμ explicitly indicates how the system's parameters influence the power absorption, and therefore it can be used
for designing a harvester. For instance, the above expression indicates that a system with a very low natural frequency
(ωo1) will be much more effective compared with that with higher natural frequency, pointing out towards a low fre-
quency energy harvesting direction.

Although it has been established that the amount of power a system can harvest is limited, it has been proved for the
systems with an external excitation. The aim of this paper is to propose a novel method for the vibration-based energy
harvesting. In this approach the vibratory system is still linear but it has a random time-varying parameter with specially
selected characteristics. It allows significantly to increase the harvested power, beyond the above established limit, as can be
seen later.

Let us consider now the linear oscillator with a random parametric excitation

€xþγ _xþ½ω2þσξðtÞ�x¼ ηðtÞ; (4)

where ξðtÞ is a formally defined telegraphic noise, i.e. zero-mean ergodic Markov process with two state f�1;1g and the
transition rate α=2, σ40 is an intensity of the noise. The telegraphic noise is a simple but quite useful model of the
stochastic process (see e.g. the books [8,9]. For the sake of simplicity we assume that the processes ξðtÞ and ηðtÞ are
independent. Then the solution to Eq. (4) in terms of second-order moments can be obtained in two steps. The first step is
an averaging over η and the second one is an averaging of the results from the first step over ξðtÞ.

For the vector u¼ ðEη½x2�; Eη½ _x2�; Eη½x _x�ÞT we obtain similar to (2) the differential equation in the matrix form

_u ¼ AuþξðtÞBuþc; (5)

where Eη½�� is averaging over the white noise η, c¼ ð0;4D;0ÞT ,

A¼
0 0 2
0 �2γ �2ω2

�ω2 1 �γ

0
B@

1
CA; B¼

0 0 0
0 0 �2σ
�σ 0 0

0
B@

1
CA:

After averaging Eq. (5) over the process ξ and using results of Refs. [10,11] we get

dEξ½uðtÞ�
dt

¼ AEξ u½ �þBu1þc;

du1ðtÞ
dt

¼ �αu1þAu1þBEξ u½ �; (6)

where u1ðtÞ ¼ Eξ½ξðtÞuðtÞ�. Therefore the set of six linear differential equations is obtained for the second-order moments of
system (4). One can derive exact analytical expressions for the stationary moments solving the appropriate set of six linear
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