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a b s t r a c t

The stability of a viscoelastic column under the excitation of stochastic axial compressive
load is investigated in this paper. The material of the column is modeled using a fractional
Kelvin–Voigt constitutive relation, which leads to that the equation of motion is governed
by a stochastic fractional equation with parametric excitation. The excitation is modeled
as a bounded noise, which is a realistic model of stochastic fluctuation in engineering
applications. The method of stochastic averaging is used to approximate the responses of
the original dynamical system by a new set of averaged variables which are diffusive
Markov vector. An eigenvalue problem is formulated from the averaged equations, from
which the moment Lyapunov exponent is determined for the column system with small
damping and weak excitation. The effects of various parameters on the stochastic stability
and significant parametric resonance are discussed and confirmed by simulation results.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic dynamic analysis is extensively used in civil and mining engineering, as the loadings imposed on the
structures are quite often of random nature, such as those arising from earthquakes, wind, explosion, and ocean waves,
which can be characterized satisfactorily only in probabilistic terms. The dynamic responses of these engineering structures
are governed in general by n-dimensional stochastic differential equations of the form

_Xj ¼ f jðt;X; ξÞ; j¼ 1;2;…;n; (1)

where X¼ fX1;X2;…;XngT is the state vector of the system and ξ is a vector of stochastic loadings. For engineering
applications, the stochastic loadings have been modeled as a Gaussian white noise process, a real noise process, or a bounded
noise process.

A white noise process is a weakly stationary process that is delta-correlated and mean zero. Its power spectral density is
constant over the entire frequency range, which is obviously an idealization. A real noise ξðtÞ is often characterized by an
Ornstein–Uhlenbeck process and is given by dξðtÞ ¼ �αξðtÞdtþs dWðtÞ, where W(t) is a standard Wiener process. It is well
known that ξðtÞ is a normally distributed random variable, which is not bounded and may take arbitrarily large values with
small probabilities, and hence may not be a realistic model of noise in many engineering applications.

A bounded noise ξðtÞ is normally represented as

ξðtÞ ¼ ζ cos ½νtþsWðtÞþθ�; (2)
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where ζ is the noise amplitude, s is the noise intensity, W(t) is the standard Wiener process and θ is a random variable
uniformly distributed in the interval ½0;2π�. The inclusion of the phase angle θ makes the bounded noise ξðtÞ a stationary
process. Eq. (2) may be written as

ξðtÞ ¼ ζ cos ZðtÞ; dZðtÞ ¼ νtþsJdWðtÞ; (3)

where the initial condition of Z(t) is Zð0Þ ¼ θ. The auto-correlation function of ξðtÞ is given by

R τð Þ ¼ E ξ tð Þξ tþτð Þ½ � ¼ 1
2
ζ2 cos ντ exp � s2

2
jτj
�
;

�
(4)

and the spectral density function of ξðtÞ is

S ωð Þ ¼
Z þ1

�1
R τð Þe� iωτ dτ¼ ζ2s2 ω2þν2þ 1

4 s
4

� �
2 ðωþνÞ2þ 1

4 s
4

h i
ðω�νÞ2þ 1

4 s
4

h i : (5)

Furthermore, jξðtÞjoζ for all values of the time t and hence is a bounded stochastic process. When the parameter s in ξðtÞ is
small, the bounded noise can be used to model a narrow-band process about frequency ν. In the limit as s approaches zero,
the bounded noise reduces to a deterministic sinusoidal function. On the other hand, in the limit as s approaches infinite,
the bounded noise becomes a white noise of constant spectral density. However, since the mean-square value is fixed at 1

2 ,
this constant spectral density level reduces to zero in the limit. The bounded noise process was first employed by
Stratonovich [1] and has since been applied in certain engineering applications [2–5].

One of the most important dynamical properties of the solution of stochastic system (1) is its dynamic stability. The
sample or almost sure stability of system (1) is governed by the Lyapunov exponents defined as

λX ¼ lim
t-1

1
t
logJXJ ; (6)

where JXJ ¼ ðXTXÞ1=2 is the Euclidean norm. If the largest Lyapunov exponent is negative, the trivial solution of system (1)
is stable with probability 1; otherwise, it is unstable almost surely. Lyapunov exponents characterize sample stability or
instability. However, this sample stability cannot assure the moment stability. Hence, to obtain a complete picture of the
dynamic stability, it is important to study both the top Lyapunov exponent and the moment Lyapunov exponent.

The stability of the pth moment E½‖X‖p� of the solution of system (1) is governed by the pth moment Lyapunov exponent
defined by

ΛX pð Þ ¼ lim
t-1

1
t
log E ‖X‖p

� �
; (7)

where E½�� denotes the expected value. If ΛXðpÞ is negative, then the pth moment is stable; otherwise, it is unstable. The pth
moment Lyapunov exponent ΛXðpÞ is a convex analytic function in p that passes through the origin and the slope at the
origin is equal to the largest Lyapunov exponent λX, i.e.

λX ¼ lim
p-0

∂ΛXðpÞ
∂p

: (8)

The non-trivial zero δX of ΛXðpÞ, i.e. ΛXðδXÞ ¼ 0, is called the stability index.
The increasing use of materials such as polymers, composite materials, metals, rocks, and alloys at elevated temperatures

has emphasized the need for development of theories for analyzing viscoelastic structures under dynamic loadings.
The dynamic stability of viscoelastic systems has been investigated by some authors [6]. The equation of motion of the
viscoelastic system under stochastic excitations is usually governed by the stochastic integro-differential equation and the
response and stability of the system is difficult to be obtained exactly. Therefore, several numerical and approximate
procedures have been proposed. Potapov described the behavior of stochastic viscoelastic systems by numerical evaluation
of Lyapunov exponents of linear integro-differential equations [7], and he studied the almost-sure stability of a viscoelastic
column under the excitation of a random wide band stationary process using Lyapunov's direct method [8]. The method of
stochastic averaging, originally formulated by Stratonovich [1] and mathematically proved by Khasminskii [9], has been
widely used to approximately solve stochastic differential equations containing a small parameter. Another reason is that
under certain conditions stochastic averaging can reduce the dimension of problems concerned to one dimension, and then
greatly simplify the solution [5].

An increasing interest has been directed to non-integer or fractional viscoelastic constitutive models [10]. In contrast to
the well-established mechanical models based on Hookean springs and Newtonian dashpots, which results in an
exponential decay of the relaxation function, the fractional models accommodate non-exponential relaxation, which makes
it possible to model hereditary property with long memory. Fractional constitutive models lead asymptotically to power law
behavior in linear viscoelasticity [11]. There is a theoretical reason for using fractional calculus in viscoelasticity, in which
the molecular theory of Rouse [12] gives relationship between stress and strain with fractional derivative of strain.
Experiments also revealed that the viscous damping behavior can be described in an excellent way by the introduction of
fractional derivatives in stress–strain relations [13,14].
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