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a b s t r a c t

We revisit an early example of a nonlinear oscillator that exhibits chaotic motions when
subjected to periodic excitation: the magneto-elastically buckled beam. In the paper of
Moons and Holmes (1980) [1] magnetic field calculations were outlined but not carried
through; instead the nonlinear forces responsible for creation of a two-well potential and
buckling were fitted to a polynomial function after reduction to a single mode model. In
the present paper we compute the full magnetic field and use it to approximate the forces
acting on the beam, also using a single mode reduction. This provides a complete model
that accurately predicts equilibria, bifurcations, and free oscillation frequencies of an
experimental device. We also compare some periodic, transient and chaotic motions with
those obtained by numerical simulations of the single mode model, further illustrating the
rich dynamical behavior of this simple electromechanical system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we return to a classical problem in nonlinear vibrations: the single degree-of-freedom (dof) Düffing's
equation [2] with an unstable equilibrium flanked by two stable equilibria. Unlike the stiffening spring case considered in
many textbooks, e.g. [3], the two-well potential energy of this system endows its phase space with a homoclinic orbit [4]
which undergoes global bifurcations that produce non-periodic, chaotic motions when external periodic forcing is applied.
This mathematical model with its physical analog of an elastic cantilever beam buckled by ferromagnetic forces, exemplified
in Fig. 1, has become a central example in “chaos theory” since its introduction in 1979 [1], e.g. see [5,6].

The simplest model for a single dof oscillator with a two-well potential has a symmetric cubic restoring force and linear
damping. With additive sinusoidal forcing, the ODE takes the form

€xþδ _x�αxþβx3 ¼ P cos ðωtÞ; (1)

where the parameters α; β; ω40, and δ; PZ0. When P ¼ δ¼ 0, Eq. (1) is a Hamiltonian system that conserves energy

H x; _xð Þ ¼ _x2

2
� αx2

2
þ βx4

4
; (2)

so that orbits of Eq. (1) lie on level sets of Hðx; _xÞ [4] and we observe a double homoclinic loop containing a saddle point on
the set Hðx; _xÞ ¼ 0. Perturbing from this integrable case, it was proved in [7] that, for fixed α; β; ω40, 0oε51, δ; P ¼OðεÞ
and P4δPcðα; β;ωÞ (a critical value, see Eq. (14) below), Eq. (1) has transverse homoclinic orbits and therefore possesses
a chaotic invariant set containing infinitely many unstable periodic orbits: a Smale horseshoe [4, Sections 4.5 and 5.1].
An analogous result was subsequently proved for a PDE modeling vibrations of a simply supported buckled beam [8] and
there have been numerous similar studies of systems with 2 or more degrees of freedom, e.g. [9–11].
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These results do not imply that Eq. (1) has a strange attractor [4] (indeed, the stable manifolds of the horseshoe may form
a fractal basin boundary separating the domains of attraction of two stable periodic orbits that “grow” from the stable
equilibria of (1) for P¼0 [6,4]), but many subsequent studies and analyses of Poincaré maps strongly suggest that there are
open (or at least measurable) sets in parameter space for which strange attractors do exist. For an introductory article with
animations, see [12].

The present paper revisits the analysis of [1], augmenting it with explicit numerical calculations of the magnetic field,
from which the nonlinear stiffness term in the single dof model may be derived explicitly. We compare the resulting
function with the cubic of Eq. (1), fitting the parameters α and β from experimental observations of equilibrium positions
and natural frequencies and deriving the damping factor δ from free vibration decay rates. We find that the model
calculations predict key quantities within 10 percent, and that bifurcation diagrams also match experimental results well,
including transitions from two to three stable equilibria and symmetry-breaking as magnet positions vary with respect to
the clamped end of the beam.

This paper is organized as follows. We first describe the magneto-elastic beam used for experimental data collection in
Section 2, since this simple physical system also underlies the model. In Section 3 we review the partial differential equation
(PDE) describing the beam and outline its reduction by Galerkin's method to an ordinary differential equation (ODE)
describing the fundamental flexural mode. The analysis follows [1], supplemented by a recent efficient algorithm due to
Derby and Olbert [13] that is used to compute the magnetic field and resulting restoring forces. Polynomial approximations
to the restoring forces are also derived, analogous to those considered in [1]. In Section 4 we compare predictions
of equilibrium positions and natural frequencies derived from the single mode model of Section 3 with experimental
measurements, and illustrate bifurcations of equilibria that occur under changes in the magnetic field due to magnet
placement relative to the beam's support. The dynamics of periodically forced vibrations are considered in Section 5,
including subharmonics and non-periodic, chaotic motions, which are studied using Poincaré maps. Conclusions and a brief
discussion follow in Section 6.

2. The experimental rig

The physical system, shown in Fig. 1, is a slender steel cantilever beam clamped in a nominally rigid frame at its upper
end and free at its lower end. The beam moves under the influence of elastic, magnetic, and noninertial forces (when the
frame is excited horizontally by the shaker). Gravitational forces also act, but these are much smaller than the forces noted
above and will be neglected in the model developed in Section 3.

The frame is fabricated in 12.3 mm thick maple hardwood with the grain oriented longitudinally in each component.
Components are joined by 3 woodscrews at top and bottom and a strip of 1018 steel is glued to the upper surface of the base
for magnet attachment. The beam is 1095 blue tempered spring steel of Young's modulus E¼2.06�105 MPa, density
ρ¼ ð7:8370:02Þ � 103 kg m�3, with thickness Δ¼ 0:2570:02 mm and width w¼9.570.5 mm, clamped at the top of
the frame by a maple strip secured by 2 woodscrews. To increase damping, strips of Scotch tape 39.270.1 mm long, 9.67
0.1 mm wide and 1.570.2 mm thick are attached to both sides of the beam near the clamp. Experiments were conducted
with free beam length L¼108.870.5 mm below the clamp and distance from beam tip to frame base 19.270.5 mm. Beam
dimensions were chosen so that the fundamental flexural mode is well separated in frequency from torsional and higher
flexural modes.

Two cylindrical rare earth magnets of radius r¼12.7 mm, height h¼6.35 mm and surface field strength Bsurface ¼
0:21 Tesla are placed with matching N–S polarities on the steel strip, whose upper surface is roughened to prevent magnet
movement. Magnet center positions can be varied upward from a minimum separation of 37.470.1 mm. Most of the
experiments are done with magnet centers (approximately) equally spaced from the undeflected beam tip, but asymmetric
cases are also considered. The frame is attached to the driving shaft of the shaker by a machine screw whose axis passes
through the frame's mass center, as computed from the assembly with magnets as modeled in Creo Pro/Engineer. Sinusoidal
excitation is provided by a K2007E01 SmartShaker electromagnetic shaker with an integrated amplifier (The Modal Shop,

Fig. 1. The magneto-elastic beam and shaker. The frame measures 153�100�76 mm3.
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