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a b s t r a c t

In this paper we investigate the short- to medium-term prediction performance of several recent wind
power forecasting models. In particular, we analyze the Wind Power Prediction Tool (WPPT), which is a
successfully employed model in Denmark, its generalization (GWPPT, generalized WPPT), an adaptation
of the Mycielski approach, a nonparametric regression model and several univariate time series
benchmarks. In the longer forecasting horizon scenario, GWPPT performs best, while the time series
models are still strong competitors in the short-term setup. Our findings are in line with the majority of
the literature. They support the results by Croonenbroeck and Dahl (2014). The Mycielski approach is a
successfully employed wind speed forecaster and usually returns well results. However, its performance
as a wind power forecasting model is somewhat limited, showing that the adaptation to this new
operational area leaves an opportunity for additional work in the future.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For the last two decades, energy production has been characterized
by renewables. Conventional power is deterministic, and as such, easy
to predict. Wind power, however, possesses stochastic features, so
prediction has proven to be a tough task. Literature holds a wide range
of wind power forecasting model propositions. Giebel et al. (2011)
provide an overview. Simple universal forecasting algorithms such as
the persistence model (i.e. x̂tþk ¼ xt) or the Mycielski algorithm (as
provided by Ehrenfeucht andMycielski, 1992) can be adopted for wind
power forecasting. Hocaoglu et al. (2009) and Gan et al. (2012) attain
good results from using the Mycielski approach for hourly rounded
wind speed predictions. Soman et al. (2010), Jiang et al. (2010),
Pourmousavi Kani (2011) and Özgonenel and Thomas (2012) use the
model as a benchmark procedure. Jiang et al. (2010) achieve good
results from the Mycielski approach for 7-day ahead forecasts. Wen
et al. (2011) and Fidan et al. (2012) improve the theory basis and Lee
et al. (2013) attain good results in a unique setting.

Still, models in even broader use are generally more advanced.
For example, WPMS (Wind Power Management System) is based
on Artificial Neural Network (ANN) modeling. Ernst and Rohrig
(2002) describe it in detail. ANN models are mostly used for

short-term prediction. However, they are oftentimes outper-
formed by highly persistent models. Moreover, they are prone to
overfitting.

Lange and Focken (2006) introduce the Prediktor model, which
is an approach based upon physics. Such models perform well in
longer-term scenarios, where persistence and periodicity are of
less importance. Finally, stochastic modeling is used mostly for
short- (up to 1 h) to medium-term forecasting (up to 48 h ahead),
as Lei et al. (2009) point out. Many models are available, capturing
several stochastic properties of wind power. For example, spatial-
temporal interdependencies between multiple turbines are inves-
tigated by Hering and Genton (2010). These models are often
based on univariate or multivariate time series modeling.

The Wind Power Prediction Tool (WPPT), as discussed by Nielsen
et al. (2007), is one of the most successful multi-variable stochastic
models. This model is put to wide use in Denmark, the worldwide
leader in wind energy harvesting (Giebel et al., 2011). The model
explains wind power production by local wind speed. It captures
diurnal periodicity by means of a Fourier series model component and
incorporates lagged variables, depending on the forecasting horizon.
Still, the model has its drawbacks. As it is linear in the estimation, it
neglects the turbine's both-sided limited power range, an important
ex ante available information. Furthermore, as locally perceived wind
direction is influenced by the turbine's immediate surroundings, this
variable provides important additional model structure, but WPPT
ignores it. The aforementioned shortcomings are eliminated within
the generalized WPPT (GWPPT). Croonenbroeck and Dahl (2014)
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recently introduce GWPPT in great detail. Moreover, they point out the
benefits of GWPPT and compare the approach to WPPT and a
persistent benchmark.

However, a broad comparison is not provided. Therefore, the gap
this paper is intended to fill is the lack of a more thorough study
concerning the forecasting performance of WPPT, GWPPT and several
other approaches. We use a different turbine data set than Croon-
enbroeck and Dahl (2014). Our data even stem from a different turbine
type and from a different manufacturer (Fuhrländer FL MD 77 instead
of Vestas V90). Certainly, our turbines are placed at different locations.
Thus, we use a unique data set of four turbines to compare GWPPT to
its antecessor, WPPT, as well as several benchmark models. Finally, we
evaluate each model's behavior at different forecasting horizons.

The selection of benchmark models is based on two main aspects:
first, comparison models should be well known and established and
second, they should be easy to implement. The first, well known and
easy approach is the persistence forecaster. Slightly more flexible and
still pretty simple, AR and VAR models are used. Next, we implement
the famous and yet rather simple Nadaraya/Watson type kernel based
nonparametric estimator. Lastly, the Mycielski approach is rather
common in the wind speed forecasting literature. Its pattern search
algorithm is easy to implement and is known for good results. To the
best of our knowledge, the approach has never been applied to wind
power forecasting before.

The paper is organized in the following way. A description of
the analyzed data is given in Section 2. Thereafter, Section 3

Fig. 1. Behavior of RMSE and MAE dependent on τ, Turbines A–D, 1 step and 72 steps ahead, time frame December 08, 2011 to January 04, 2012.

Table 1
Average length of Mycielski chains dependent on τ and percentage inflation of chain length in comparison to previous chain length (τ�1).

Model τ¼ 0 τ¼ 1 τ¼2 τ¼ 3 τ¼ 4 τ¼ 5

Turbine A
1 step 1.00 1.75 (þ75.31%) 2.38 (þ35.54%) 2.57 (þ8.24%) 2.77 (þ7.61%) 2.91 (þ5.12%)
72 steps 1.00 1.75 (þ75.34%) 2.38 (þ35.54%) 2.60 (þ9.24%) 2.77 (þ6.62%) 2.91 (þ5.15%)

Turbine B
1 step 1.00 1.73 (þ73.45%) 2.34 (þ34.68%) 2.53 (þ8.41%) 2.73 (þ7.76%) 2.88 (þ5.35%)
72 steps 1.00 1.73 (þ73.25%) 2.33 (þ34.39%) 2.55 (þ9.33%) 2.72 (þ6.90%) 2.88 (þ5.40%)

Turbine C
1 step 1.00 1.72 (þ72.18%) 2.33 (þ35.27%) 2.52 (þ8.34%) 2.72 (þ7.70%) 2.86 (þ5.15%)
72 steps 1.00 1.72 (þ72.09%) 2.32 (þ35.02%) 2.53 (þ9.03%) 2.71 (þ7.09%) 2.85 (þ5.17%)

Turbine D
1 step 1.00 1.74 (þ73.53%) 2.39 (þ37.64%) 2.58 (þ7.95%) 2.77 (þ7.37%) 2.91 (þ5.00%)
72 steps 1.00 1.73 (þ73.42%) 2.38 (þ37.31%) 2.59 (þ8.78%) 2.76 (þ6.64%) 2.90 (þ5.03%)
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