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a b s t r a c t

The estimation of peak wind pressures is important in the reliability- and performance-based design for
low-rise buildings. Typically, Davenport's formula is widely used to determine the peak factor if the
pressure approximately follows Gaussian distribution. Recently, the moment-based Hermite polynomial
model (HPM) is becoming popular to estimate the peak factor when the non-Gaussianity of wind
pressure exists. However, their performances deserve further study based on the appropriate wind
tunnel data. In this study, Davenport's formula and moment-based HPM are reviewed. The peak value of
wind pressure is determined using very long time histories of wind pressure data to evaluate the per-
formance of moment-based HPM and Davenport's formula. Results suggest that moment-based HPM
should be adopted in the peak value estimation for wind pressures when the skewness and kurtosis of a
process are sufficient to capture its non-Gaussian properties. Results also show that Davenport's formula
may cause noticeable errors in the peak factor estimation for the wind pressure data close to Gaussian
process while HPM provides a robust estimation for these data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The low-rise building roof is very vulnerable to strong winds,
thus the characterization of wind pressures on the roof top is an
important issue in the reliability- and performance-based design
for low-rise buildings. In most design codes and specifications, the
mean value of the peak wind pressure during the duration T is
determined from the peak factor, which is defined as

g¼ ðμxp �μxÞ=σx ð1Þ

where μxp represents the mean of peak values for wind pressure
coefficient XðtÞ, and μx and σx are the mean and standard deviation
(STD) of XðtÞ, respectively. Note that the peak value selected from
each segment is the instantaneous maximal value from the raw
data, and not averaged for a short duration, such as 3 s in full scale.
When the wind pressure approximately follows the Gaussian
distribution, the well-known Davenport's formula can be used to
determine the peak factor. However, significant portions of wind
pressures on the roof top may exhibit non-Gaussianity and it has
been shown that the application of Davenport's formula to non-
Gaussian data can lead to unconservative peak factor estimates
(e.g., Balderrama et al., 2012).

Based on whether kurtosis is larger than 3, the non-Gaussian
process is classified as “hardening” (kurtosiso3) and “softening”
(kurtosis43) cases (Winterstein, 1988). “Hardening” wind pressure
processes may have bimodal distributions (Ding and Chen, 2014),
and skewness and kurtosis may not be effective to characterize
these non-Gaussian features. The peak factor of the “hardening”
wind pressure process is usually less than that of a Gaussian process
and the application of Davenport's formula is conservative in the
cladding design. Therefore the “softening” wind pressure is the
focus hereafter. For “softening” processes, the peak factor can be
calculated by moment-based Hermite polynomial model (HPM)
through closed-form formula. Based on skewness and kurtosis,
Kareem and Zhao (1994), Chen and Huang (2009) and Kwon and
Kareem (2011) derived the closed-form formula, while Huang et al.
(2013) obtained it from the probability function of local peaks of
wind pressures, which was fitted by Weibull distribution. If the
peak wind pressure follows Gumbel distribution, the peak factor is
associated with the peak wind pressure at 57% fractile. Note that
fractile values presented in this study are referring to the distribu-
tion of the peak pressure and the peak value is selected from the
pressure time history of duration T where T could be 10-min or 1 h.
Due to the conservativeness and simplicity, Holmes and Cochran
(2003) recommended the use of Gumbel distribution.

78% fractile of the peak pressure coefficient is suggested for
defining design wind loading in codes and standards to consider
the randomness of both wind speed and pressure coefficient (e.g.,
Cook, 1990; Chen and Huang, 2010). Focusing on 78% fractile peak
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pressure coefficient for non-Gaussian roof pressure data, Peng
et al. (2014) demonstrated moment-based HPM has the satisfac-
tory performance based on the closed-form approximate solution
to HPM coefficients by Yang et al. (2013). Although both of
Davenport's formula and moment-based HPM have been studied
previously (e.g., Balderrama et al., 2012; Peng et al., 2014; Huang et
al., 2015), there is a need to systematically scrutinize their per-
formance in estimating the peak factor and peak value using very
long wind pressure data.

In this study, Davenport's formula and moment-based HPM are
reviewed, and some new insights are presented. Using very long
wind pressure data collected by the University of Western Ontario
(UWO), the peak values of wind pressures are quantified empiri-
cally. Then the ability of moment-based HPM and Davenport's
formula to estimate the peak factor and peak value is evaluated in
detail. Finally, concluding remarks will be given.

2. Davenport's formula

For the standard Gaussian process U(t), the cumulative dis-
tribution function (CDF) of the peak value during the time period T
is given as follows

FUp ðupÞ ¼ exp �v0Texp �u2
p

2

 !" #
ð2Þ

and the corresponding probability density function (PDF) is given
by

f Up
ðupÞ ¼ v0Tupexp �v0Texp �u2

p
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�u2

p

2

" #
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where Up is the peak value of the process UðtÞ during T and up are
specific values of Up, and v0 is the mean upcrossing rate across
zero. The upcrossing rate v0 can be computed by

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
f 2SUðf Þdf

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
SUðf Þdf
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where f is the frequency and SU ðf Þ is the power spectral density
(PSD) of UðtÞ.

If ξ¼ v0Texp �u2p
2

� �
is introduced, then up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðv0TÞ�2 ln ξ

p
.

Based on Taylor's theorem, up is expressed as

up ¼ β� ln ξ
β

� ln2ξ

2β3 þ⋯ ð5Þ

where β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðv0TÞ

p
. The mean and standard deviation (STD) of

the peak value can be derived as

μup
¼
Z 1

0
updFUp ðupÞ ¼

Z 1

0
upexpð�ξÞdξ ð6Þ

σup ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
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Neglecting the terms of order β�3 and substituting Eq. (5) to
Eqs. (6) and (7) respectively, the mean and STD of the peak value
can be determined by (Davenport, 1964)

μup
¼ βþγ

β
ð8Þ

σup ¼
πffiffiffi
6

p
β

ð9Þ

where γ � 0:5772 is Euler's constant. It is well known that g ¼ μup

is Davenport's peak factor for the standard Gaussian process.
In addition, the peak factor and STD of the peak value can also

be conveniently derived from the perspective of Gumbel

distribution because the peak value distribution of UðtÞ approxi-
mately follows Gumbel distribution. The CDF of the peak value
during the time period T can be approximately expressed as

FUp ðupÞ ¼ exp �exp �αup ðup�_upÞ
� �� � ð10Þ

and the corresponding PDF is given by

f Up
ðupÞ ¼ αupexp �exp �αup ðup�_upÞ

� ��αup ðup�_upÞ
� � ð11Þ

where the dispersion 1=αup is a measure of “spread” and the mode
u
_
p is the value with maximum likelihood.
Based on the assumption that the CDF defined by Eq. (2) and its

derivative are equal to those associated with Eq. (10) at the mode
up ¼_up, the following simultaneous equations can be obtained

v0Texp �
_u2

p

2

 !
¼ 1; v0T

_upexp �
_u2

p

2

 !
¼ αup ð12Þ

Hence

_up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðv0TÞ

p
¼ β; αup ¼ β ð13Þ

and the mean and STD of the peak value are given by

μup
¼_upþ

γ
αup

¼ βþγ
β

ð14Þ

σup ¼
πffiffiffi
6

p
αup

¼ πffiffiffi
6

p
β

ð15Þ

Furthermore, according to Eq. (2), the q fractile value of the
peak value of UðtÞ can be determined as

up;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

v0T
lnð1=qÞ

s
ð16Þ

Because the peak value of UðtÞ approximately follows Gumbel
distribution, the peak factor can be readily estimated by sub-
stituting q¼ 57% to Eq. (16). Also other q fractile values can be
obtained, such as 78% and 86% fractiles.

3. Moment-based HPM

As mentioned previously, XðtÞ represents wind pressure coef-
ficient process. Accordingly, the standardized process is expressed
by ~X ðtÞ ¼ ½XðtÞ�μx�=σx. For the “softening” case, the following third
order HPM is used to relate the standard Gaussian process UðtÞ and
the standardized non-Gaussian process ~X ðtÞ (Winterstein, 1988):

~x ¼HðuÞ ¼ κ½H1ðuÞþh3H2ðuÞþh4H3ðuÞ� ð17Þ

where κ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2h23þ6h24

q
is a scaling factor to ensure that ~X ðtÞ

has unit variance; h3 and h4 are parameters which control the
shape of the distribution of ~X ðtÞ; the ith Hermite polynomial
function is defined as

HiðuÞ ¼ ð�1Þiexp u2

2
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More specifically, H1ðuÞ ¼ u, H2ðuÞ ¼ u2�1 and H3ðuÞ ¼ u3�3u.
The parameters can be obtained through numerical solution of

the nonlinear equations derived by Tognarelli et al. (1997) and
Gurley (1997), or by Ditlevsen et al. (1996). The derivation and
equivalence for both sets of equations can be found in Appendix A,
where the equivalence between them is also illustrated. To
improve the computational efficiency, several closed-form
approximate formulas have been proposed to estimate the para-
meters, including Winterstein (1988), Winterstein and Kashef
(2000) and Yang et al. (2013). The approximate solution by Yang
et al. (2013) has been shown to perform well for mildly and
strongly non-Gaussian wind pressure. In this study, the nonlinear
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