#### Renewable Energy 95 (2016) 474-477

Contents lists available at ScienceDirect

**Renewable Energy** 

journal homepage: www.elsevier.com/locate/renene



# Simultaneous metabolism of benzoate and photobiological hydrogen production by *Lyngbya* sp.



Xian-Yang Shi<sup>a, b</sup>, Han-Qing Yu<sup>b, \*</sup>

<sup>a</sup> School of Resource and Environmental Engineering, Anhui University, Hefei 230601, China
<sup>b</sup> CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China

#### ARTICLE INFO

Article history: Received 31 March 2015 Received in revised form 2 February 2016 Accepted 19 April 2016 Available online 30 April 2016

*Keywords:* Benzoate Cyanobacteria Photobiological hydrogen production

# ABSTRACT

Cyanobacteria are an inexpensive and sustainable source of photobiological  $H_2$  production due to their simple nutritional conditions. Combination of toxic contaminant degradation with  $H_2$  production is a promising approach in wastewater treatment. This study demonstrated that *Lyngbya* sp., a filamentous cyanobacterium, can generate  $H_2$  in the presence of benzoate which is a central intermediate during the anaerobic degradation of many aromatic compounds. The highest  $H_2$  production rate of 17.05 µmol  $H_2/g$  Chla/h was obtained in the second cycle and 600 mg/L benzoate was depleted within 64 h in  $H_2$  production test. The strain has shown a higher  $H_2$ -producing capacity, which was comparable to those of certain noted strains such as  $N_2$ -fixing filamentous *Anabaena variabilis* PK84 and non- $N_2$ -fixing filamentous *Microcystis PCC* 7806. The co-metabolism of benzoate for  $H_2$  production by *Lyngbya* sp. makes it an interesting model strain for clean energy production and hazardous pollutant removal.

© 2016 Elsevier Ltd. All rights reserved.

# 1. Introduction

Hydrogen is regarded as a clean, renewable and alternative energy to fossil fuels [1]. Microalgae can evolve H<sub>2</sub> from water using sunlight as an energy source under anaerobic conditions [2]. Cyanobacteria are ideal microbes for photobiological H<sub>2</sub> production because they require the simplest nutritional conditions [3]. Some filamentous cyanobacteria and a unicellular diazotrophic were found to produce high amounts of H<sub>2</sub> [4,5]. Photobiological H<sub>2</sub> production of a cyanobacterium is significantly influenced by many environmental factors including oxic/anoxic, light/dark period, light intensity, temperature, pH and salinity [3,6].

Aromatic compounds are widely used as industrial chemicals and consequently have a high potential to become environmental pollutants [7]. Microalgae, the primary producers in many aquatic ecosystems, are capable of removing these hazardous pollutants and can grow photosynthetically without the addition of any organic carbon sources [8,9]. Phenol degradation by green algae, i.e., *Chlorella* spp., *Scenedesmus obliquus* and *Spirulina maxima*, has been well documented by many studies [10]. *Ochromonas danica*, a golden-brown alga, has the metabolic capacities to degrade phenol

\* Corresponding author. E-mail address: hqyu@ustc.edu.cn (H.-Q. Yu). and phenolics [11]. However, at present, the biodegradative capabilities of aromatic compounds by prokaryotic cyanobacteria remain relatively unknown.

The present work aimed to explore the potential for *Lyngbya* sp., a filamentous cyanobacterium, to degrade aromatic compounds. Benzoate was selected as the modeled hazardous pollutant because it is the simplest aromatic acid and also the product of oxidative catabolism of many aromatic hydrocarbons. Furthermore, the feasibility of harvesting  $H_2$  from wastewater containing benzoate by *Lyngbya* sp. was also investigated.

# 2. Materials and methods

# 2.1. Strain and growth conditions

*Lyngbya* sp. isolated from an upflow anaerobic sludge blanket reactor treating phenol-containing wastewater was used. It was pre-cultured in a basal medium containing (mg/L): benzoate 500; NaNO<sub>3</sub> 800; KH<sub>2</sub>PO<sub>4</sub> 250; MgCl<sub>2</sub> 250; CaCl<sub>2</sub> 100; NaHCO<sub>3</sub> 200; (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub> 0.5; CoCl<sub>2</sub>·6H<sub>2</sub>O 0.01; ZnCl<sub>2</sub> 0.1; CuCl<sub>2</sub> 0.01; H<sub>3</sub>BO<sub>3</sub> 2; EDTA-2Na 2. The 150 mL culture was grown in 300-mL glass reactors with rubber-stoppers at a temperature of  $30 \pm 1$  °C, pH of 7.4 and light intensity of 1000 lux.



#### 2.2. Hydrogen production experiment

The strain at the late exponential phase was harvested by centrifugation (4000× g for 5 min), washed three times with deionized water and resuspended in fresh H<sub>2</sub> production medium consisting of (mg/L): benzoate 600; KH<sub>2</sub>PO<sub>4</sub> 50; K<sub>2</sub>HPO<sub>4</sub> 50; MgCl<sub>2</sub> 50; CaCl<sub>2</sub> 50; NaHCO<sub>3</sub> 50; NH<sub>4</sub>Cl 50; (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub> 0.5; CoCl<sub>2</sub> · 6H<sub>2</sub>O 0.01; ZnCl<sub>2</sub> 0.1; CuCl<sub>2</sub> 0.01; H<sub>3</sub>BO<sub>3</sub> 2; EDTA-2Na 2. Approximately 100 mL of the cyanobacterium suspensions was placed in 150-mL glass reactors, flushed with argon for 10 min and sealed with rubber-stoppers. The pH, temperature and light intensity were adjusted to 7.4,  $32 \pm 1$  °C and 4000 lux, respectively.

After the  $H_2$  evolution ceased, the cultures collected from each reactor were used to perform the  $H_2$  production test again under the same conditions described above. The process was repeated three times to evaluate the stability of  $H_2$  production by *Lyngbya* sp.

### 2.3. Analytical methods

The light intensity, chlorophyll *a* amount, cell dry weight and  $H_2$  production were measured according to the methods described in previous studies [12]. The morphology of *Lyngbya* sp. was observed using a light microscope (Olympus CX41, Japan). The evolved gas collected from the headspace of the reactors using a gas-tight lockable syringe was injected into a gas chromatograph (GC, SP-6800A, China) to monitor  $H_2$  and  $O_2$  contents. The operational parameters for GC could be found in our previous work [13]. The concentration of benzoate was determined by high-performance liquid chromatography (Agilent 1100, USA) using a C-18 column, with a UV detector at 225 nm. The mobile phase used was 0.3%  $H_3PO_4$  in 60% methanol at a flow rate of 1.2 mL/min.

# 3. Results and discussion

#### 3.1. Cyanobacterium growth

The morphology of *Lyngbya* sp. is shown in Fig. 1, which is classified as a non-N<sub>2</sub>-fixing filamentous cyanobacterium due to the lack of heterocysts. The growth of *Lyngbya* sp. was examined in liquid medium in the presence of 500 mg/L benzoate.

As shown in Fig. 2, the cyanobacterium concentration increased with the incubation time. To describe the growth of *Lyngbya* sp. in detail, the following modified logistic model was used [14]:



Fig. 1. Morphology of *Lyngbya* sp. under a light microscope.



Fig. 2. Growth of Lyngbya sp. in liquid medium in the presence of 500 mg/L benzoate.

$$X = \frac{X_0 \times \exp(k_c \times t)}{1 - (X_0 / X_{\text{max}})(1 - \exp(k_c \times t))}$$
(1)

where *X* is the cyanobacterium dry weight (g/L),  $X_0$  is the initial cyanobacterium dry weight (g/L),  $K_c$  is the apparent specific growth (h<sup>-1</sup>) and  $X_{max}$  is the maximum cyanobacterium dry weight (g/L). A high correlation coefficient ( $R^2$ ) of 0.985 showed that the experimental data fitted the modified logistic model well (Fig. 2). The maximum apparent specific growth ( $K_c$ ) reached 0.0395 h<sup>-1</sup>, suggests that the cyanobacterium number of *Lyngbya* sp. could be doubled after incubation for 8.54 h. The maximum cyanobacterium dry weight of 1.90 g/L was achieved in a 48 h incubation period and 500 mg/L benzoate was consumed completely. The results also indicate that *Lyngbya* sp. is capable of metabolizing both an inorganic carbon source and an organic carbon source to support its growth. However, no H<sub>2</sub> generation was observed in growth phase of *Lyngbya* sp. with 800 mg/L NaNO<sub>3</sub> as the nitrogen source.

# 3.2. Photobiological H<sub>2</sub> production

Fig. 3 shows the  $H_2$  production profiles in two reactors under nitrate-deprivation conditions, the control reactor without the addition of benzoate and the other reactor with 600 mg/L benzoate as the carbon source. No  $H_2$  generation was observed from the control reactor, whereas  $H_2$  evolution was detected from the other



Fig. 3.  $H_2$  percentage profiles in two reactors: ( ullet ) with benzoate; and (  $\bigcirc$  ) without benzoate.

Download English Version:

# https://daneshyari.com/en/article/299716

Download Persian Version:

https://daneshyari.com/article/299716

Daneshyari.com