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a b s t r a c t

Using the governing equations of motion of a fluid- saturated poroelastic medium including micro-
stiffness (for the solid and the fluid) and micro-inertia (for the solid) effects, propagation of plane har-
monic waves are studied in the low and high frequencies range. The study involves both dilatational and
rotational waves and focuses on the micro-stiffness and micro-inertia effects on the dispersion and
attenuation of these waves.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The quasi-static and dynamic theories of linear poroelasticity
due to Biot [1,2] have found many applications in geotechnical
engineering, bioengineering and materials science and engineer-
ing. A comprehensive review on the subject of poroelastodynamics
involving linear models and analytical and numerical methods of
solution up to 2009 has been reported by Schanz [3].

For some classes of materials like granular ones, which possess
a natural microstructure, classical linear elasticity cannot take into
account microstructural effects and resort should be made to
higher order theories that do take into account those effects. A
general linear theory of elasticity with microstructural effects
(both of the micro-stiffness and micro-inertia type) has been de-
veloped by Mindlin [4]. The simplest possible version of that
theory has two elastic constants (internal length scale) in addition
to the two classical elastic modili, which express the micro-
structural (micro-stiffness and micro-inertia) effects in a micro-
scopic manner. Using that simple theory, called gradient elastic
theory, various wave propagation problems have been solved (e.g.
[5,6]) and the microstructural effects on dispersion curves have
been assessed. Microstructural effects in fluid-saturated por-
oelastic media have been studied by Berryman and Thigpen [7]
through micro-inertia terms and Aifantis [8] and Vardoulakis and
Aifantis [9] through second order gradients for densities and fluid
pressure. More recently, Sciarra et al. [10] and Madeo et al. [11]
developed a poroelastic theory involving gradient effects (micro-
stiffness of solid) and studied the one – dimensional consolidation

(quasi-static) problem of soil mechanics. Recently, Papargyri-Bes-
kou et al. [12] introduced second order gradient of strain in the
stress-strain relation for the solid component of a fluid-saturated
poroelastic medium and stadied the gradient effect on the dy-
namic column problem of soil mechanics. Finally, Papargyri-Bes-
kou et al. [13] developed a thee-dimensional poroelasticity theory
with micro-stiffness effects for both the solid and the fluid and
micro-inertia effects for the solid and studied wave dispersion and
attenuation in the low frequency range.

In this Note, the work in [13] is extended to the high frequency
range by following Biot [2] and the effects of the microstructural
parameters on wave dispersion and attenuation in poroelastic
media are assessed.

2. Wave propagation analysis

The governing equations of motion of a fluid-saturated por-
oelastic medium including microstructural effects as derived in
[13] with the aid of the theory of mixtures have the form
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The above equations form a system of 3þ3þ1¼7 partial dif-
ferential equations with 7 unknowns, that is, three solid dis-
placements ui, three fluid displacements ui

f and one porewater
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pressure p. The coefficients g and h with dimensions of length
correspond to micro-stiffness and micro-inertia of the solid, while
θ, also with dimensions of length, to micro-stiffness of the fluid.
When g¼h¼θ¼0 there are no microstructural effects. Further-
more, λ and μ are the classical Lame constants, νf is the dynamic
viscosity of the fluid, Κ the Muskat permeability, n the porosity, β
a coefficient expressing the solid deformability affecting the fluid
flow, γ is a coefficient measuring the compressibility of the porous
medium, δ is the fluid compressibility and ρ ρ¯ = ( − )n1s s and
ρ ρ¯ = nf fwith ρs and ρf being the mass density of the solid and fluid,
respectively. Finally it should be mentioned that indicial notation
is used everywhere, a comma denotes differentiation with respect
to space, overdots denote differentiation with respect to time and
repeated indices indicate summation.

Application of the divergence and the rot (curl) operators on
Eqs. (1) and (2) and employment of Eq. (3) results in the dilatation
equations of motion [13].

λ μ ε
βν

β ε γ δ θ

ρ ε

( + )( − ∇ )∇ = [( + ) ̇ + ( + )( − ∇ ) ̇]

+ ¯ ( − ∇ ) ¨ ( )

g
K

n n p

h

2 1 1

1 4

f

s

2 2 2 2 2

2 2

β θ ρ βε ρ γ δ θ
βν

β ε γ δ θ

( − ∇ )∇ = ¨ + ( + )( − ∇ )

+ ( + ) ̇ + ( + )( − ∇ ) ̇
( )

⎡⎣ ⎤⎦
p n p

K
n n p

1 1

1 5

f f

f

2 2 2 2 2

2 2

and the rotational equations of motion [13].
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Consider first plane harmonic waves in the x-z plane propa-
gating along the z direction in an infinitely extended medium
moving according to Eqs. (4) and (5). Thus [13].

ε ω Λ ω Λ= [ ( − )] = [ ( − )] ( )A i t z p B i t zexp , exp 9

where A and B are amplitudes, ω, Λ the complex wavenumber and
= −i 1 . It can be shown that [13].

ε( ) = ( ) ( )Δ ω− ( − )p A B e e, , 10z i t k zp p

where kp and Δp are the wavenumber and attenuation coefficient,
respectively, for dilatation or P-waves, connected via Λ as
Λ ω ω= ( ) − Δ ( )k ip p with the Λ's obtained as the roots of an alge-
braic equation of the 8th order [13]. The phase velocity Cp of
P-waves is then obtained by ω ω= ( )C k/ .p p

Consider now plane harmonic waves in the x-z plane propa-
gating along the z direction in an infinitely extended medium
moving according to Eqs. (6) and (7). Thus [13]

ω Λ ω Λω ω= [ ( − ¯ )] = [ ( − ¯ )] ( )i t z i t zA Bexp exp 11f

where A and B are vector amplitudes and Λ̄ the complex wave-
number. It can be shown that [13]

ω ω( ) = ( ) ( )ω−Δ ( − )e eA B, , 12f z i t k zs s

where ks and Δs are the wavenumber and attenuation coefficient,
respectively, for rotational or S-waves, connected via Λ̄ as
Λ ω ω¯ = ( ) + Δ ( )k is s with Λ̄ obtained as the roots of an algebraic
equation of the 4th order [13]. The phase velocity Cs of S-waves is
then obtained by ω ω= ( )C k/ .s s

3. Dispersion and attenuation curves

The physical quantities of interest here are the frequency-de-
pendent velocities of propagation Cp1, Cp2, Cs and the correspond-
ing attenuation coefficients Δp1, Δp2, Δs. The variation of these
quantities with frequency is presented here for various combina-
tions of the microstructural parameters g, h and θ. All quantities
are normalized. Thus, Cp1, Cp2 are normalized by δ ρ= [( ) ]C 1/ /pf f

1/2,

Cs by μ ρ= ( ¯ )C / ,rs s
1/2 ω is normalized by ω βν ρ= ¯K/ ,rp f s Δp1, Δp2 are

normalized by ω C/rp rp with λ μ ρ= [( + ) ¯ ]C 2 / ,rp s
1/2 and Δs is nor-

malized by ω C/rs rs with ω βν ρ= K/rs f f .
According to Biot [2], Poiseuille flow in the pores breaks down

for frequencies higher than ω πν ρ= d/4 ,t f f
2 where d is the pore

diameter. In the low frequency range (ω ω≤ t ), νf is constant, while
in the higher frequency range, νf is replaced by ν ω( )Ff , where ω( )F
is a frequency correction factor expressed in terms of Bessel-Kelvin
functions. The work in [13] was restricted to the low frequency
range. The present Note extends that work to the high frequency
range. There is also an upper bound ωu for the frequency in the
higher range to ensure that the medium is still continuum, i.e., the
value at which the wavelength becomes of the order of the pore
size. Thus, ω π= C d2 /u where C is the phase velocity of the S wave
for the soil-fluid mixture computed as μ ρ ρ= ( ( ¯ + ¯ ))C / s f

1/2. Follow-
ing Beskos et al. [14], the correction factor F(ω) is expressed as
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The numerical results of this section have been obtained on the
basis of the values of the coefficients shown in Table 1 of [13],
which correspond to a fully-saturated poroelastic sandstone. For
these values one has ωt¼7.85�105 rad/s, ωrp¼4.352�105 rad/s
and ωrs¼8.838�105 rad/s. Thus, the low frequency results are
valid for ω ω≤ t or for ω ω ω ω⌢ = ≤ ⌢ =/ 1.804rp t and
ω ω ω ω⌢ = ≤ ⌢ =/ 0.888rs t for P and S waves, respectively. Finally,
ωu¼140�105 sec�1 and hence ω ω ω⌢ = =/ 32.1738491u u rp and
ω ω ω⌢ = =/ 15.840u u rs for P and S waves, respectively.

Using the above numerical data, dispersion and attenuation
curves for the two P-waves and the S-waves of the considered
gradient poroelastic medium have been obtained for the whole
frequency range (low and higher) thereby completing the work in
[13], which is restricted only to the low frequency range, i.e., up to
ω⌢ .t

Figs. 1 and 2 present dispersion curves for the first (fast) P wave

V.D. Smyrlis et al. / Soil Dynamics and Earthquake Engineering 88 (2016) 72–75 73



Download English Version:

https://daneshyari.com/en/article/303838

Download Persian Version:

https://daneshyari.com/article/303838

Daneshyari.com

https://daneshyari.com/en/article/303838
https://daneshyari.com/article/303838
https://daneshyari.com

