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h i g h l i g h t s

� Automated analysis of the EEG provides a widely accessible, noninvasive and continuous assessment
of brain activity.

� We developed an automated measure of EEG maturational age in the very and extremely premature
neonate.

� Automated estimates of EEG maturational age are correlated with gestational age.

a b s t r a c t

Objective: To develop an automated estimate of EEG maturational age (EMA) for preterm neonates.
Methods: The EMA estimator was based on the analysis of hourly epochs of EEG from 49 neonates with
gestational age (GA) ranging from 23 to 32 weeks. Neonates had appropriate EEG for GA based on visual
interpretation of the EEG. The EMA estimator used a linear combination (support vector regression) of a
subset of 41 features based on amplitude, temporal and spatial characteristics of EEG segments.
Estimator performance was measured with the mean square error (MSE), standard deviation of the esti-
mate (SD) and the percentage error (SE) between the known GA and estimated EMA.
Results: The EMA estimator provided an unbiased estimate of EMA with a MSE of 82 days (SD = 9.1 days;
SE = 4.8%) which was significantly lower than a nominal reading (the mean GA in the dataset; MSE of
267 days, SD of 16.3 days, SE = 8.4%: p < 0.001). The EMA estimator with the lowest MSE used amplitude,
spatial and temporal EEG characteristics.
Conclusions: The proposed automated EMA estimator provides an accurate estimate of EMA in early pre-
term neonates.
Significance: Automated analysis of the EEG provides a widely accessible, noninvasive and continuous
assessment of functional brain maturity.
� 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Every year, over two million babies are born very or extremely
premature, less than 32 weeks gestational age (GA), and will
require admission to a neonatal intensive care unit (NICU)
(Blencowe et al., 2012). Neurological complications from
prematurity can result in a 10–25 fold increase in annual health-
care costs (Kancherla et al., 2012). While recent progress in
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cardio-respiratory intensive care has increased the numbers of sur-
viving neonates, the proportion of survivors with lifelong neu-
rocognitive disabilities has not significantly declined (Saigal and
Doyle, 2008; Sellier et al., 2010). This developmental compromise
may originate from neurological complications associated with
conditions such as infection, cerebral haemorrhage and lung dis-
ease which are acquired during a stay in the NICU (Volpe, 2001).
Many of these issues can be treated or prevented by prompt cot-
side recognition. It is, therefore, important that the neurological
function of preterm neonates is carefully monitored in the NICU.

Currently available, noninvasive, tools for monitoring brain
function in the NICU include electroencephalography (EEG) and
near infrared spectroscopy which can be supplemented with struc-
tural information from imaging methods such as cranial ultra-
sound and magnetic resonance imaging. Clinical work in the
1970’s, mostly based on visual EEG interpretation, has established
well recognised developmental changes in EEG activity (André
et al., 2010; Aminoff, 2012). These visually observed changes in
EEG waveforms can be explained in the context of early develop-
mental changes in neuronal networks and their molecular expres-
sions (Vanhatalo and Kaila, 2006). This has informed clinical EEG
review of preterm neonates which is based on detecting deviances
in EEG maturational age (EMA) from what is expected at a given
conceptual or maturational age (MA) (Scher, 1997). A well trained
clinical electroencephalographer may be able to visually detect
delayed maturation or dysmaturity of approximately two weeks
(Parmelee et al., 1968). Such analysis is, however, challenged by
several caveats: (1) it is qualitative, (2) the required expertise
and access to facilities are limited and (3) assessment is rarely per-
formed in a spatial context.

A device that provides a computational means of tracking EEG
brain maturation in preterm neonates, allowing comparison of
the recorded and expected EEG maturation, would be a useful tool
for clinicians in the NICU (Scher, 1997). Quantitative analyses have
suggested a wide variety of signal properties, estimated from auto-
mated segmentations of the EEG and measurements of spectral
power, amplitude and connectivity, that correlate with MA
(Holthausen et al., 2000; Niemarkt et al., 2011; O’Reilly et al.,
2012; Koolen et al., 2014; Meijer et al., 2014; Murphy et al.,
2015; Saji et al., 2015; Schumacher et al., 2015). These analyses
provide a candidate feature set for use in an automated EMA esti-
mator in the very and extremely premature neonate.

In the present work, we developed an ‘‘EMA estimator” for pre-
term neonates, with appropriate EEG for GA, based on automated
analysis of the EEG. We used a combination of well studied fea-
tures that have been shown to correlate with MA extracted from
different segments of the EEG recording. The performance of our
EMA estimator was then evaluated on a relatively large database
of preterm neonates to provide proof of concept evidence for the
design of a novel automated EEG maturity index.

2. Method

2.1. Database

2.1.1. Subjects
A database of EEG recordings from 49 preterm neonates with

appropriate EEG for GA was used to develop the automated EMA
estimator. Neonates with a range of GA from 23 weeks plus 3 days
to 32 weeks plus 0 days (164–224 days) were included in the data-
base. The distribution of GA in the database is shown in Fig. 1(A);
the mean GA was 28.6 weeks (198 days) with a standard deviation
of 16 days. Neonates were enrolled for EEG monitoring from the
NICU of the Cork University Maternity Hospital, Ireland from Jan-
uary 2009 to October 2011. Approval for the study was obtained

from the Clinical Research Ethics Committees of the Cork Teaching
hospitals, Ireland. Written, informed consent was received from at
least one parent of each neonate included in the study.

2.1.2. EEG recording
Multi-channel, conventional video-EEG recording was com-

menced on enrolment (within 72 h of birth) and continued for up
to 3 days. A Nicolet One EEG machine (Natus Medical Inc., Pleasan-
ton, CA, USA) was used to acquire the EEG. An array of 10 scalp
electrodes were placed according to the International 10–20 sys-
tem of electrode placement modified for neonates: frontal (F3,
F4), central (C3, C4, Cz), temporal (T3, T4), occipital (O1, O2), and
a reference. A bipolar montage of 8 channels was used in this
study: C4–O2, C3–O1, C4–T4, C3–T3, C4–Cz, Cz–C3, F4–C4, F3–
C3. Electrode to scalp impedance was maintained below 5 kΩ
when possible. EEGs were recorded with a sampling frequency of
256 Hz. After each EEG was recorded, all identifiable patient infor-
mation was removed from the recording and the EEG was stored
with a unique study number.

2.1.3. EEG review
The EEGs were examined by an experienced neonatal neuro-

physiologist (GBB) and were included if the EEG was judged to
be appropriate for MA (André et al., 2010; Aminoff, 2012) and no
clear abnormalities were present on the EEG (Watanabe et al.,
1999; André et al., 2010). This resulted in the inclusion of the
EEG recordings of 49 out of a possible 80 preterm neonates. The
EEG recordings from these neonates were then segmented into
three, hour long epochs (147 epochs in total) that were predomi-
nantly free of significant artefact.

2.1.4. MA assignment
The EMA estimator was developed with the aim of minimising

the error between the EMA and GA. The GA was assigned using the
best obstetric estimate, an estimate based on the mother’s report
of the first day of their last menstrual period (LMP) as well as ultra-
sound (US) assessment at approximately 12 weeks GA (Engle et al.,
2004). The LMP was used as the primary method of attributing a
GA unless there was significant (greater than 7 days) deviation
between reported LMP and US assessment at which point the US
date was used. For analysis, we considered this definition of GA
as the MA because the EEG was recorded so close to birth; the
median postnatal age of EEG recording was 15 h (interquartile
range, IQR: 6–19). More specifically, we assumed that GA was
approximately post-menstrual age (PMA) which is a biased esti-
mate of MA, see Fig. 1(B). This minimised any confounding effects
from differences between intra-uterine and extra-uterine matura-
tion on the EEG (Nunes et al., 2014; Shany et al., 2014).

2.2. Automated EEG analysis

The automated analysis of the EEG was based on the extraction
of features or characteristics of the EEG that have been shown to
correlate with MA. These features include spectral power, inter-
hemispheric synchrony and inter-burst interval (Aminoff, 2012).
Example epochs of preterm EEG are shown in Fig. 2. These features
were extracted from segments of EEG that relate to underlying
physiological activity. The segmentation of the EEG was based on
the model of preterm EEG proposed by Vanhatalo and Kaila
(2006), see Fig. 2(C) in the text and Fig. 3 in Vanhatalo and Kaila
(2006) for more details. During early brain development, cortical
(EEG) activity consists of unique intermittent activity that is con-
sidered crucial for brain maturation. This activity is readily
observed in the EEG as spontaneous activity transients (SAT),
which alternate with periods of gradually increasing continuous
cortical activity (inter-SAT). The intrinsic properties of these two
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