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a b s t r a c t

A probabilistic framework for Bayesian inference combined with extreme values of Gaussian processes is
proposed to assess the maximum of the response of an uncertain structure instrumented with sensors
and subject to a stochastic load. The framework is applied to the analysis of the inter-story drift of a
multi-story shear-type building under seismic hazard using measurements collected by accelerometers.
A cascade of two dynamic systems is proposed to model the stochastic ground motion and the response
of the structure. We present an approximate analytical solution to estimate the distribution of the max-
imum response, and verify the accuracy and limitations of this solution against simulation results.
Finally, robustness of the proposed framework to system uncertainties, including uncertainties in the
structural characteristics, ground characteristics, and input motion parameters, is investigated.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Monitoring of instrumented civil structures and infrastructure
is becoming ubiquitous, as sensors continue to decrease in price
and increase in capability. Structural health monitoring (SHM)
methods have been developed to both improve the data collected
through the development of new sensor devices, as well as facili-
tate how this data is used to learn about the system. The focus of
this paper is on the latter, in how we process sensor data to per-
form inference on the structural response.

Monitoring systems provide real-time measurements on the
dynamic response of structures during extreme events. Informa-
tion about the structural model and the stochastic load can be inte-
grated into the data processing to probabilistically evaluate
features relevant to the post-event condition assessment, such as
extreme values of key structural responses.

To do this task, in this paper we propose a framework based on
the Kalman smoother for Gaussian linear systems and extreme
value analysis of Gaussian processes. The objective is to accurately
assess the maximum of the response of a linear structure under
stochastic excitation by processing noisy sensor measurements.
We apply the framework to the estimation of the inter-story drift

of a multi-story, shear-type building under seismic hazard using
information from measurements of accelerometers placed at
selected floors of the building. We develop a cascade of two sys-
tems, modeling the seismic ground motion and the vibrating struc-
ture. We derive an analytical solution to estimate the distribution
of the peak response, conditioned on the measurements, and
results from this solution are compared with those obtained from
Monte Carlo simulations. Finally, we show the proposed proba-
bilistic framework to be robust to system uncertainties, including
uncertainties in the structural characteristics, ground characteris-
tics, and input motion parameters. This work informs decision
making in the management of structures subject to seismic hazard
and for the development and design of smart SHM systems.

2. Background and related work

For Gaussian linear models, the Kalman Filter (KF) [1] and Kal-
man Smoother (KS) [2] can be used to estimate the system state for
dynamically evolving systems by processing sparse measures of
the system response. While the KF algorithm computes the poste-
rior probability of the system given past and present measure-
ments, the KS algorithm allows, after an event, to compute the
posterior distribution with respect to all measurements collected
even after the time at which the state is being evaluated. The KF
and KS allow computation of not only the marginal probability of
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system state at each time, but also to sample trajectories. The
reader is referred to the texts [3,4] for treatment of the KF and
KS models.

As the KF and KS perform probabilistic analysis of a dynamic
system, they are ideal for structural health monitoring (SHM)
applications, where observations of a structure are used to charac-
terize and assess the state of the structure over time. In this study,
we are interested in performing inference on the dynamically
evolving response of a structure when it is subjected to a stochastic
excitation, e.g., an earthquake, based on uncertain information, e.g.,
sensor measurements.

KF and KS are algorithms for linear Gaussian models, which can
be seen as special cases of the Dynamic Bayesian Network (DBN).
The DBN is a probabilistic framework that models the evolution
of a system or process over time. It consists of a sequence of con-
nected Bayesian Networks (BNs), each representing the system at
a time slice t [5]. The evolution in time is represented by directed
links between nodes of successive time-slice BNs that carry infor-
mation on temporal dependencies of the respective processes.
Inference on the DBN for linear Gaussian systems can be performed
using the KF and KS.

2.1. Probabilistic frameworks for structural health monitoring

Applications of the KF in SHM can be found in [6–8]. In these
works, the Extended KF is used for system identification of linear
and nonlinear systems. Studies using Bayesian methods in SHM
have focused on identifying modal parameters of a structure and
performing damage detection. A Bayesian framework to obtain dis-
tributions of the modal parameters, including the most probable
values of the parameters and their uncertainties, is proposed in
[9]. Au et al. [10] and Katafygiotis and Yuen [11] used data from
ambient vibrations for modal identification. A Bayesian approach
is proposed in [12] to account for uncertainties in the structural
system to determine the existence and location of damage. Vanik
et al. [13] used the proposed approach to continually update the
stiffness parameters of a structure with a high likelihood of reduc-
tion in stiffness at a particular location used as a proxy for damage
at that location. Rather than damage detection, we are interested in
performing inference on the state of a structural system as it is
subjected to a specific stochastic hazard.

For the monitoring of structures during extreme events, SHM
systems are proposed in [14,15]. These studies are focused on
the hardware aspects of the system rather than on performing
probabilistic analysis of the data collected using these systems.
Wu and Beck [16] used a Bayesian framework and expanded their
analysis to the monitoring of a system both before and after an
earthquake, with pre-event prognosis and post-event diagnosis.
The response of the structure during the seismic event, however,
is not analyzed. In general, previous studies using Bayesian meth-
ods for SHM limit the use of the Bayes rule to the standard Baye-
sian updating of system parameters. In this paper, we present a
probabilistic framework to estimate the evolution of the structural
response to stochastic excitation based on sensor measurements,
and show the methodology to be robust to system uncertainties
in performing this inference.

3. Method

3.1. System formulation

In the following, a capital bold letter denotes a matrix, such as
the mass matrix M, a small bold letter denotes a vector, as in the
vector of structural displacements relative to the ground usðtÞ,
and a small italic letter denotes a scalar quantity, such as the

ground displacement ugðtÞ. Displacement and acceleration are
denoted u and a, respectively, while zðtÞ collects displacement
and velocity values. Subscripts g and s indicate quantities for the
ground and structure, respectively.

We model the dynamical system as a cascaded system of two
sub-systems: a ground sub-system and a structural sub-system,
as shown in Fig. 1.

The ground dynamical sub-system takes a modulated white-
noise input wðtÞ, representing the motion at the bedrock, and out-
puts the acceleration agðtÞ on the ground surface. The structural
dynamical sub-system takes agðtÞ as well as ambient noise as exci-
tation and produces the structural response usðtÞ, the vector of
nodal displacements relative to the ground. Our interest lies not
only in inferring the instantaneous values of usðtÞ and related
responses, but also in their peak values over time. This study
assumes linear structural behavior as well as Gaussianity of both
the earthquake and ambient-vibration input excitations to allow
the use of Gaussian models and the KF described in the following
sections. The proposed method can be extended to analyze nonlin-
ear structural behavior by relaxing the assumption of a linear
Gaussian system. As such, the current study is appropriate for
operating-basis seismic events.

3.1.1. Ground dynamical sub-system
The equation describing the motion on the ground surface rela-

tive to the bedrock is given by

€ug þ 2ngxg _ug þx2
gug ¼ �w ð1Þ

where xg and ng define the angular frequency and damping ratio of
the ground filter and w denotes the modulated white-noise acceler-
ation at the bedrock. Written in first-order form with

zg ¼ ug _ug
� �T, (1) becomes

_zg ¼
0 1

�x2
g �2ngxg

" #
zg þ

0
�1

� �
w ð2Þ

The total acceleration at the surface of the ground, ag , is
obtained as

ag ¼ €ug þw ¼ 0 1½ � _zg þw ¼ �x2
g �2ngxg

� �
zg ð3Þ

3.1.2. Structural dynamical sub-system
The equation of motion for a linear structure subjected to base

motion is

M€us þ C _us þ Kus ¼ �Miag þ f ð4Þ
where M, C, and K denote the mass, damping, and stiffness matri-
ces, respectively, i is the influence vector relating the degrees of
freedom to a unit base motion, and f models a random external
force vector representing the effect of ambient noise, adding uncer-
tainty to the system response. In first-order form, using zTs ¼ ½uT

s
_uT
s �,

(4) becomes

_zs ¼
0 I

�M�1K �M�1C

� �
zs þ

0
�i

� �
ag þ

0
M�1

� �
f ð5Þ

3.1.3. State-space representation
Combining (2), (3) and (5), we obtain a representation of the full

dynamical system in first-order form

Fig. 1. Dynamical system model, consisting of ground and structural sub-systems.
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