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a b s t r a c t

For modeling material properties having a bounded range, the beta distribution may be adopted as the
marginal distribution of a second-order non-Gaussian random field. Three aspects related to the simula-
tion of such random field are discussed in this study. First, an unbiased and consistent estimator for the
lower (and upper) bound of the beta distribution based on sample data is proposed. This estimator is
shown to be generally more efficient than that given by the method of moments. Second, a simple explicit
function relating the auto-correlation function of the non-Gaussian random field to that of the underlying
Gaussian field is proposed. The relationship facilitates control on the scale of fluctuation of the
non-Gaussian field. Third, an algorithm is proposed for generating random fields with an approximate
marginal beta distribution and a prescribed cross-correlation, where the latter can range from �1 to 1.
Numerical examples are given to illustrate the effectiveness and efficiency of each of the three aspects.
The estimation of the lower bound of material property is exemplified through field data from a real
project.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of uncertainties in the material properties has
been acknowledged by the engineering community and accounted
for in codes of practice [1,2]. By treating the material properties as
random variables or in some cases as random fields, statistics-
based reliability analysis and the specification of characteristic val-
ues are techniques adopted to handle uncertainties in a consistent
manner [3–6].

The normal and lognormal distributions are widely used to
describe random variables in practice [6] due to their simplicity
and well-established properties, notwithstanding that often the
actual distributions are hard to establish due to the limited amount
of data. However, there are engineering variables that have obvious
lower and upper limits and there are instances where large vol-
umes of data are available. For the latter, high order moments
(e.g. skewness and kurtosis) of a random variable may even be esti-
mated with fairly good accuracy. Some distributions are only
uniquely defined by higher order moments, such as the maximum
entropy distribution [7–9], Hermite polynomials of normal variates
[10] and Johnson’s system of frequency distributions [11].

Recently, Low [12] developed a four-parameter distribution to
reflect the first four moments of sampled data.

The current study adopts the beta distribution as it not only can
capture the first four moments of a random variable, but is
bounded. In addition, it has well-established properties for
computer-aided simulations. Many publications [3,4,13,14] have
shown the flexibility of the beta distribution in reflecting the vari-
ability of material properties. Harrop-Williams [15] analytically
showed that the strength parameters (cohesion and the tangent
of friction angle) of uniform soils follow the beta distribution.
Therefore, it is of practical interest to establish methods to effi-
ciently and accurately estimate the parameters of beta distribution
from sampled data.

Unlike the normal and lognormal distributions which are
completely defined by the sample mean and variance, the beta dis-
tribution requires additional information, such as the distribution
bounds or higher order moments. Cooke [16] proposed a method
to estimate the bounds of general random variables. Based on
Cooke’s method, He [17] proposed an iterative algorithm to
estimate the bounds of beta-distributed random variables. This
algorithm was simplified by Liu et al. [18]. However, both the orig-
inal and simplified iterative algorithms have certain conditions for
convergence, and the iterative process may lead to biased estima-
tors. Another commonly used approach [3,19] is to fix the range of
the distribution to six sample standard deviations centered at the
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sample mean, which may not reflect correctly the skewness of the
distribution. In this paper, a non-iterative approach is proposed to
estimate the bounds of a beta variable. It will be shown that this
leads to unbiased and consistent estimators. The approach will
be compared with the method of moments [20,21], where the
bounds are obtained through the first four moments of sampled
data.

In the case of a medium with material property that fits the
marginal beta distribution, a second-order beta random field [22]
may be considered. One way to generate such beta field is to trans-
late from an underlying Gaussian field [23]. However, the transla-
tion changes the correlation structure [24]. Yamazaki and
Shinozuka [25] proposed a method to rectify the simulated corre-
lation structure by iteratively updating the power spectral density
function (PSDF) (which is the Wiener-Khintchine transform of cor-
relation function) of the underlying Gaussian field until a desired
PSDF of the translation field is achieved. This updating method
has been extensively developed [26–28]; in particular, Shields
et al. [28] proposed an iterative translation approximation method
to speed up the calculation. However, the iteration process in sim-
ulating random field might be time-consuming [29,30], where
additional effort in generating the underlying Gaussian field is
needed to match the PSDF. Matching the PSDF may preserve the
form of the correlation function; however, the exact scale of fluctu-
ation (SOF) may not be realized. This paper proposes an alternative
method where the SOF can match exactly the prescribed value
without iteration, assuming that the exact form of the auto-
correlation function is not as critical in stochastic finite element
analysis. On the other hand, based on Grigoriu’s [10] work, the
lower bound of correlation of a translation random field is gener-
ally greater than -1 [31]. Some material properties indeed have
negative correlation (close to �1), such as the friction angle and
effective cohesion of soils [13,32]. The lower bound in correlation
may be necessary and sufficient to reflect the cross-correlation in
such kinds of material properties. To circumvent this difficulty, a
method based on Cholesky decomposition [33] is proposed to gen-
erate a beta field with a prescribed cross-correlation ranging from
�1 to 1.

2. Beta distribution

2.1. Probability density function

A random variable X distributed in the interval [a, b] is said to
follow the beta distribution, if its probability density function
(PDF), fX(x; a, b), satisfies:

f Xðx;a;bÞ ¼
ðx�aÞa�1ðb�xÞb�1

Bða;bÞðb�aÞaþb�1 ; a 6 x 6 b

0; otherwise

(
ð1Þ

in which a and b are the lower and upper bounds of X, respectively;
a and b are the shape parameters, which are positive real numbers;
B is the beta function [20]. The cumulative distribution function
(CDF) of X, FX(x; a, b), can be obtained from Eq. (1) via integration.

2.2. Estimation of bounds

Let X1, X2, . . ., Xn be a random sample of size n from a beta
distribution FX(x; a, b). For simplicity, this sequence is assumed
to be an ordered statistics with X1 and Xn being the minimum
and maximum of the sequence, respectively, and the sample size
n is reasonably large (say larger than 20). The shape parameters
(a, b) are assumed to be known, or can be obtained by the method
outlined in Oboni and Bourdeau [34] or estimated from the first
four moments of the sampled data [21]. It can be shown that the

following estimator bb gives an unbiased and consistent estimation
[35] of the upper bound b:bb ¼ Xn þ b � ðXn � Xn�1Þ ð2Þ

Proof:
As the maximum of a sample, the CDF of Xn is given by:

FXn ðx;a;bÞ ¼ ½FXðx;a;bÞ�n ð3Þ
For a reasonably large n, Eq. (3) leads to the Type III extreme

value distribution and may be written as [16,36]:

FXn ðx;a;bÞ ¼ exp � b� x
b� jn

� �b
( )

ð4Þ

in which

jn ¼ F�1
X ð1� 1=n;a; bÞ ð5Þ

The expectation of Xn can be calculated as:

EfXng ¼
Z b

�1
xdFXnðx;a;bÞ ð6Þ

The right-hand side of Eq. (6) can be integrated by parts:

EfXng ¼ b�
Z b

�1
FXnðx;a;bÞdx ð7Þ

Substituting Eq. (4) into Eq. (7) and integrating the CDF gives:

EfXng ¼ b� b� jn

b
C

1
b

� �
ð8Þ

in which C(�) is the gamma function [20]. Similarly, the expectation
of Xn�1 can be obtained as:

EfXn�1g ¼ b� ðb� jnÞCð1=bþ 2Þ
Cð2Þ ð9Þ

Since Cð1=bþ 2Þ ¼ ð1=bþ 1Þ � Cð1=bþ 1Þ and Cð2Þ ¼ 1, the

expectation of bb in Eq. (2) can therefore be calculated as:

Efbbg ¼ b ð10Þ

Thus, bb is an unbiased estimator of the upper bound b. For the
extreme case where n tends to an infinitely large value, both Xn

and Xn�1 converge in probability towards the upper bound b, which

implies that bb equals to b under this extreme case. Thus, bb is also a
consistent estimator [35] of the upper bound b. j

Likewise, it can be shown that the estimator ba:ba ¼ X1 � a � ðX2 � X1Þ ð11Þ
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Fig. 1. Estimation of bounds based on ordered sample data.
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